7.已知橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1,F(xiàn)2為其左、右焦點,A,B分別為其左、右頂點,若4$\overrightarrow{A{F_1}}$=$\overrightarrow{{F_1}B}$,則該橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

分析 由題意可知:丨$\overrightarrow{A{F_1}}$丨=a-c,丨$\overrightarrow{{F_1}B}$丨=a+c,由4$\overrightarrow{A{F_1}}$=$\overrightarrow{{F_1}B}$,則4(a-c)=a+c,求得a=$\frac{5}{3}$c,橢圓的離心率e=$\frac{c}{a}$=$\frac{3}{5}$.

解答 解:由橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),焦點在x軸上,
由題意可知:丨$\overrightarrow{A{F_1}}$丨=a-c,丨$\overrightarrow{{F_1}B}$丨=a+c,
由4$\overrightarrow{A{F_1}}$=$\overrightarrow{{F_1}B}$,
∴4(a-c)=a+c,
整理得:3a=5c,a=$\frac{5}{3}$c,
∴橢圓的離心率e=$\frac{c}{a}$=$\frac{3}{5}$,
故選:B.

點評 本題考查橢圓標準方程,考查橢圓的簡單幾何性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知AB是圓O的直徑,直線CD與圓O相切于點C,弦AE的延長線交CD于點D,若∠DAC=∠CAB.
(1)求證:AD⊥CD;
(2)若AD=9,AB=16,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)為奇函數(shù),當x<0時,f(x)=x+ln(-x),則曲線y=f(x)在點(e,f(e))處的切線方程為y=(1-$\frac{1}{e}$)x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知在△ABC內(nèi)有一點P,滿足$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,過點P作直線l分別交AB、AC于M、N,若$\overrightarrow{AM}$=m$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AC}$(m>0,n>0),則m+n的最小值為( 。
A.$\frac{4}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=(ax2+x-1)ex(a<0).
(1)當a=-1時,若函數(shù)y=f(x)與g(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+m的圖象有且只有3個不同的交點,求實數(shù)m的值的取值范圍;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$\frac{x^2}{48}$+$\frac{y^2}{36}$=1,F(xiàn)1,F(xiàn)2是左、右焦點,點A是橢圓上的一點,I是三角形F1AF2內(nèi)切圓的圓心.
(I)若∠F1AF2=60°,求三角形F1AF2的面積;
(II)直線AI交x軸于D點,求$\frac{AI}{ID}$;
( III)當點A在橢圓上頂點時,圓I和圓G關(guān)于直線y=1對稱,圓G與x軸的正半軸交于點H,以H為圓心的圓H:(x-2)2+y2=r2(r>0)與圓G交于B,C兩點.設(shè)P是圓G上異于B,C的任意一點,直線PB、PC分別與x軸交于點M和N,求$\overrightarrow{GM}$•$\overrightarrow{GN}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)集合A={x|x2-3x-10≤0},B={x|m-1≤x≤2m+1}.
(1)當x∈Z時,求A的非空真子集的個數(shù);
(2)若A?B,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知拋物線x2=2py(p>0),定點C(0,p),點N是點C關(guān)于坐標原點O的對稱點,過定點C(0,p)的直線l交拋物線x2=2py(p>0)于A,B兩點,設(shè)N到直線l是距離為d,則|AB|•d的最小值為$4\sqrt{2}{p}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)a,b∈R+,且a≠b,a+b=2,則必有 ( 。
A.1≤ab≤$\frac{{a}^{2}+^{2}}{2}$B.$\frac{{a}^{2}+^{2}}{2}$<ab<1C.ab<$\frac{{a}^{2}+^{2}}{2}$<1D.1<ab<$\frac{{a}^{2}+^{2}}{2}$

查看答案和解析>>

同步練習(xí)冊答案