設(shè)雙曲線C的中心在原點,它的右焦點是拋物線y2=
8
3
3
x
的焦點,且該點到雙曲線的一條準(zhǔn)線的距離為
3
2

(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與雙曲線C交于兩點A、B,試問:
(1)當(dāng)k為何值時,以AB為直徑的圓過原點;
(2)是否存在這樣的實數(shù)k,使A、B關(guān)于直線y=ax對稱(a為常數(shù)),若存在,求出k的值,若不存在,請說明理由.
(Ⅰ)∵拋物線y2=
8
3
3
x
的焦點為(
2
3
3
,0)
,(1分)
∴設(shè)中心在原點,右焦點為(
2
3
3
,0)
的雙曲線C的方程為
x2
a2
-
y2
b2
=1

(
2
3
3
,0)
到雙曲線的一條準(zhǔn)線的距離為
3
2
,
a2
c
=
2
3
3
-
3
2
=
3
6
.(2分)
a2=
3
6
×
2
3
3
=
1
3
.∴b2=c2-a2=(
2
3
3
)2-
1
3
=1
.(3分)
∴雙曲線C的方程為3x2-y2=1.(4分)
(Ⅱ)(1)由
y=kx+1
3x2-y2=1
得(3-k2)x2-2kx-2=0.(5分)
△=4k2-4(-2)(3-k2)>0
3-k2≠0
-
6
<k<
6
(k≠±
3
)
.①(7分)
設(shè)A(x1,y1),B(x2,y2).
∵OA⊥OB,∴y2y1+x2x1=0,y1=kx1+1,y2=kx2+1.(9分)
∴(kx1+1)(kx2+1)+x1x2=0.即x1x2(1+k2)+k(x1+x2)+1=0.②
x1+x2=
2k
3-k2
,x1x2=
-2
3-k2
,代入②,解得k=±1,滿足①.
∴k=±1時,以AB為直徑的圓過原點.(10分)
(2)假設(shè)存在實數(shù)k,使A、B關(guān)于直線y=ax對稱(a為常數(shù)),
ka=-1
y1+y2=k(x1+x2)+2
y1+y2
2
=a•
x1+x2
2
.
由④、⑤得a(x1+x2)=k(x1+x2)+2.(12分)
x1+x2=
2k
3-k2
代入上式,得2ak=6,∴ak=3.與③矛盾.(13分)
∴不存在實數(shù)k,使A、B關(guān)于直線y=ax對稱.(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C的中心在原點,它的右焦點是拋物線y2=
8
3
3
x
的焦點,且該點到雙曲線的一條準(zhǔn)線的距離為
3
2

(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與雙曲線C交于兩點A、B,試問:當(dāng)k為何值時,以AB為直徑的圓過原點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C的中心在原點,以拋物線y2=2
3
x-4
的頂點為雙曲線的右焦點,拋物線的準(zhǔn)線為雙曲線的右準(zhǔn)線.
(1)試求雙曲線C的方程;
(2)設(shè)直線l:y=2x+1與雙曲線C交于A、B兩點,求|AB|;
(3)對于直線L:y=kx+1,是否存在這樣的實數(shù)k,使直線L與雙曲線C的交點A、B關(guān)于直線y=ax(a為常數(shù))對稱,若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C的中心在原點,它的右焦點是拋物線y2=
8
3
3
x
的焦點,且該點到雙曲線的一條準(zhǔn)線的距離為
3
2

(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與雙曲線C交于兩點A、B,試問:
(1)當(dāng)k為何值時,以AB為直徑的圓過原點;
(2)是否存在這樣的實數(shù)k,使A、B關(guān)于直線y=ax對稱(a為常數(shù)),若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年北京市豐臺區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)雙曲線C的中心在原點,它的右焦點是拋物線的焦點,且該點到雙曲線的一條準(zhǔn)線的距離為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與雙曲線C交于兩點A、B,試問:
(1)當(dāng)k為何值時,以AB為直徑的圓過原點;
(2)是否存在這樣的實數(shù)k,使A、B關(guān)于直線y=ax對稱(a為常數(shù)),若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年北京市豐臺區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)雙曲線C的中心在原點,它的右焦點是拋物線的焦點,且該點到雙曲線的一條準(zhǔn)線的距離為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與雙曲線C交于兩點A、B,試問:當(dāng)k為何值時,以AB為直徑的圓過原點.

查看答案和解析>>

同步練習(xí)冊答案