如圖,在四棱錐P ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱,,底面為直角梯形,其中BC∥AD, AB⊥AD, ,O為AD中點(diǎn).
(1)求直線與平面所成角的余弦值;
(2)求點(diǎn)到平面的距離;
(3)線段上是否存在一點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.
(1)與平面所成角的余弦值為;(2)點(diǎn)到平面的距離;(3)存在,.
【解析】
試題分析: 思路一、由PA=PD, O為AD中點(diǎn),側(cè)面PAD⊥底面ABCD,可得PO⊥平面ABCD.
又在直角梯形中,易得所以可以為坐標(biāo)原點(diǎn),為軸,為軸,
為軸建立空間直角坐標(biāo)系,然后利用空間向量求解. 思路二、(1)易得平面,所以即為所求.(2)由于,從而平面,所以可轉(zhuǎn)化為求點(diǎn)到平面.(3)假設(shè)存在,過Q作,垂足為,過作,垂足為M,則即為二面角的平面角.設(shè),利用求出,若,則存在,否則就不存在.
試題解析:(1) 在△PAD中PA=PD, O為AD中點(diǎn),所以PO⊥AD,
又側(cè)面PAD⊥底面ABCD, 平面平面ABCD=AD, 平面PAD,
所以PO⊥平面ABCD.
又在直角梯形中,易得;
所以以為坐標(biāo)原點(diǎn),為軸,為軸,
為軸建立空間直角坐標(biāo)系.
則,,,;
,易證:,
所以平面的法向量,
所以與平面所成角的余弦值為 .4分
(2),設(shè)平面PDC的法向量為,
則,取得
點(diǎn)到平面的距離 .8分
(3)假設(shè)存在,且設(shè).
因?yàn)?/span>
所以,
設(shè)平面CAQ的法向量中,則
取,得.
平面CAD的一個(gè)法向量為,
因?yàn)槎娼?/span>Q OC D的余弦值為,所以.
整理化簡得:或(舍去),
所以存在,且 13分
考點(diǎn):空間的角與距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com