7.已知一個(gè)長(zhǎng)方體的表面積為48(單位:cm2),12條棱長(zhǎng)度之和為36(單位:cm),則這個(gè)長(zhǎng)方體的體積的取值范圍是[16,20](單位:cm3).

分析 求出體積關(guān)于c的函數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可得出結(jié)論.

解答 解:設(shè)長(zhǎng)方體的三條棱長(zhǎng)分別為a,b,c,則a+b+c=9,ab+bc+ac=24,
化簡(jiǎn)可得V=abc=c(c2-9c+24),c的范圍[1,5]
∴V′=3(c-2)(c-4),
∴函數(shù)在(1,2),(4,5)上單調(diào)遞增,(2,4)上單調(diào)遞減,
c=2時(shí),V=20,c=4時(shí),V=16,
∴這個(gè)長(zhǎng)方體的體積的取值范圍是[16,20].
故答案為:[16,20].

點(diǎn)評(píng) 本題考查長(zhǎng)方體體積的計(jì)算,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c.已知B≠$\frac{π}{2}$,且3cosC+c•cosB=$\frac{3sinA}{sinB}$
(1)求b的值;
(2)若B=$\frac{π}{3}$,求△ABC周長(zhǎng)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.二次不等式-$\frac{a}{3}$x2+2bx-c<0的解集是全體實(shí)數(shù)的充要條件是( 。
A.$\left\{\begin{array}{l}{a>0}\\{4^{2}-\frac{4}{3}ac<0}\end{array}\right.$B.$\left\{\begin{array}{l}{a>0}\\{4^{2}-\frac{4}{3}ac>0}\end{array}\right.$C.$\left\{\begin{array}{l}{a<0}\\{4^{2}-\frac{4}{3}ac>0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{4^{2}-\frac{4}{3}ac<0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過雙曲線的一個(gè)焦點(diǎn)F2作垂直干實(shí)軸的弦PQ,F(xiàn)1是另一焦點(diǎn),若∠PF1Q=$\frac{π}{2}$,則雙曲線的離心率e等于( 。
A.$\sqrt{2}$-1B.$\sqrt{2}$C.$\sqrt{2}$+2D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)在定義域(0,+∞)內(nèi)恒滿足:①f(x)>0;②2f(x)<xf′(x)<3f(x),其中f′(x)為f(x)的導(dǎo)函數(shù),則( 。
A.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$B.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$C.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$D.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,莖葉圖記錄了甲、乙兩位射箭運(yùn)動(dòng)員的5次比賽成績(jī)(單位:環(huán)),若兩位運(yùn)動(dòng)員的平均成績(jī)相同,則成績(jī)較為穩(wěn)定的運(yùn)動(dòng)員成績(jī)的方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$e=\frac{{\sqrt{3}}}{2}$,P為橢圓E上的動(dòng)點(diǎn),P到點(diǎn)M(0,2)的距離的最大值為$\frac{2}{3}\sqrt{21}$,直線l交橢圓于A(x1,y1)、B(x2,y2)兩點(diǎn).
(1)求橢圓E的方程;
(2)若以P為圓心的圓的半徑為$\frac{2}{5}\sqrt{5}$,且圓P與OA、OB相切.
(i)是否存在常數(shù)λ,使x1x2+λy1y2=0恒成立?若存在,求出常數(shù)λ;若不存在,說明理由;
(ii)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=x•ecosx(x∈[-π,π])的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在空間四面體EFGH中,點(diǎn)I是面FGH的重心,則$\overrightarrow{EI}$=( 。
A.$\frac{1}{2}$$\overrightarrow{EF}$+$\frac{1}{2}$$\overrightarrow{EG}$+$\frac{1}{2}$$\overrightarrow{EH}$B.$\frac{1}{5}$$\overrightarrow{EF}$+$\frac{1}{5}$$\overrightarrow{EG}$+$\frac{1}{5}$$\overrightarrow{EH}$C.$\frac{1}{4}$$\overrightarrow{EF}$+$\frac{1}{4}$$\overrightarrow{EG}$+$\frac{1}{4}$$\overrightarrow{EH}$D.$\frac{1}{3}$$\overrightarrow{EF}$+$\frac{1}{3}$$\overrightarrow{EG}$+$\frac{1}{3}$$\overrightarrow{EH}$

查看答案和解析>>

同步練習(xí)冊(cè)答案