若f(x)為R上的增函數(shù),且f(a-1)>f(3a-3),求實數(shù)a的取值范圍.
考點:函數(shù)單調性的性質
專題:計算題,函數(shù)的性質及應用
分析:由于f(x)為R上的增函數(shù),則f(a-1)>f(3a-3),即為a-1>3a-3,解得即可得到范圍.
解答: 解:由于f(x)為R上的增函數(shù),
則f(a-1)>f(3a-3),
即為a-1>3a-3,
解得,a<1,
則實數(shù)a的取值范圍是(-∞,1).
點評:本題考查函數(shù)的單調性的運用:解不等式,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在正方形ABCD-EFGH中,求證:平面BED⊥平面AEGC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(cosx,2),
b
=(4cosx,
3
sin2x)且F(x)=
a
b
,求:
(1)F(x)的解析式;
(2)當x∈[-
π
3
,
π
3
]時,F(xiàn)(x)的最值;
(3)F(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)的定義域是R,且對?x,y∈R,都有f(x+y)=f(x)+f(y)成立.
(1)試判斷f(x)的奇偶性;
(2)若當x>0時,f(x)>0,判斷函數(shù)的單調性;
(3)若f(8)=4,求f(-
1
2
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓心在y軸上且過點(3,1)的圓與x軸相切,則該圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,2)、B(-1,2),動點P滿足AP⊥BP,若雙曲線
x2
a2
-
y2
b2
-=1的一條漸近線與動點P的軌跡沒有公共點,則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
4
=1(a>0)的漸近線方程為2x±3y=0,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將圓x2+y2=4上點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼囊话,所得曲線設為E.
(1)求曲線E的方程;
(2)若曲線E與x軸、y軸分別交于點A(a,0),B(-a,0),C(0,b),其中a>0,b>0.過點C的直線l與曲線E交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.當點P異于點B時,求證:
OP
OQ
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=1,且對于任意的n∈N*都an+1=a1+an+n,則
1
a1
+
1
a2
+…+
1
a2013
=( 。
A、
2012
2013
B、
4026
2014
C、
4024
2014
D、
2013
2014

查看答案和解析>>

同步練習冊答案