已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a1=a(a≠0),an+1=rSn(n∈N*,r∈R,r≠-1),
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若存在k∈N*,使得Sk+1,Sk,Sk+2成等差數(shù)列,試判斷:對于任意的m∈N*,且m≥2,am+1,am,am+2是否成等差數(shù)列,并證明你的結(jié)論.

解:(1)由已知,可得,
兩式相減可得,即,
又a2=ra1=ra,
所以當(dāng)r=0時(shí),數(shù)列{an}為:a,0,…,0,…;
當(dāng)r≠0,r≠-1時(shí),由已知a≠0,所以an≠0(n∈N*),
于是由,可得,
∴a2,a3,…,an,…成等比數(shù)列,
∴當(dāng)n≥2時(shí),
綜上,數(shù)列{an}的通項(xiàng)公式為;
(2)對于任意的m∈N*,且m≥2,成等差數(shù)列.
證明如下:當(dāng)r=0時(shí),由(1)知,
∴對于任意的m∈N*,且m≥2,成等差數(shù)列;
當(dāng)r≠0,r≠-1時(shí),
,
若存在k∈N*,使得成等差數(shù)列,則,
,即,
由(1)知,a2,a3,…,an,…的公比r+1=-2,
于是對于任意的m∈N*,且m≥2,am+1=-2am,
從而,
,即成等差數(shù)列.
綜上,對于任意的m∈N*,且m≥2,成等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案