給出如下定理:“若Rt△ABC的斜邊AB上的高為h,則有 
1
h2
=
1
CA2
+
1
CB2
.”在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,類比上述定理,得到的正確結論是
 
分析:由平面圖形中的二維性質類比推理出空間里三維的性質,故由平面性質:“若Rt△ABC的斜邊AB上的高為h,則有 
1
h2
=
1
CA2
+
1
CB2
.”可以推斷出一個在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,也存在一個相似的三維性質.
解答:解:∵在平面上的性質,若Rt△ABC的斜邊AB上的高為h,則有 
1
h2
=
1
CA2
+
1
CB2
.”
我們類比到空間中,可以類比推斷出:
在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,有:
1
h2
=
1
PA2
+
1
PB2
+
1
PC2

故答案為:
1
h2
=
1
PA2
+
1
PB2
+
1
PC2
點評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•眉山二模)對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點,且有如下零點存在定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)•f(b<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內有零點.給出下列命題:
①若函數(shù)y=f(x)有反函數(shù),則f(x)有且僅有一個零點;
②函數(shù)f(x)=2x3-3x+1有3個零點;
③函數(shù)y=
x26
和y=|log2x|的圖象的交點有且只有一個;
④設函數(shù)f(x)對x∈R都滿足f(3+x)=f(3-x),且函數(shù)f(x)恰有6個不同的零點,則這6個零點的和為18;
其中所有正確命題的序號為
②④
②④
.(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•普陀區(qū)一模)給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•
b2+c2-a2
2bc
=b•
a2+c2-b2
2ac
?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果
等腰或直角三角形
等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:2012年四川省眉山市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點,且有如下零點存在定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)•f(b<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內有零點.給出下列命題:
①若函數(shù)y=f(x)有反函數(shù),則f(x)有且僅有一個零點;
②函數(shù)f(x)=2x3-3x+1有3個零點;
③函數(shù)y=和y=|log2x|的圖象的交點有且只有一個;
④設函數(shù)f(x)對x∈R都滿足f(3+x)=f(3-x),且函數(shù)f(x)恰有6個不同的零點,則這6個零點的和為18;
其中所有正確命題的序號為    .(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市普陀區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市普陀區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

給出問題:已知△ABC滿足a•cosA=b•cosB,試判斷△ABC的形狀,某學生的解答如下:
(i)a•?a2(b2+c2-a2)=b2(a2+c2-b2)?(a2-b2)•c2=(a2-b2)(a2+b2)?c2=a2+b2
故△ABC是直角三角形.
(ii)設△ABC外接圓半徑為R,由正弦定理可得,原式等價于2RsinAcosA=2RsinBcosB?sin2A=cos2B?A=B
故△ABC是等腰三角形.
綜上可知,△ABC是等腰直角三角形.
請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果   

查看答案和解析>>

同步練習冊答案