已知橢圓C:
(1)已知橢圓的長(zhǎng)軸是焦距的2倍,右焦點(diǎn)坐標(biāo)為F(1,0),寫出橢圓C的方程;
(2)設(shè)K是(1)中所的橢圓上的動(dòng)點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),求線段KO的中點(diǎn)B的軌跡方程;
(3)設(shè)點(diǎn)P是(1)中橢圓C 上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,KPN試探究kPM•KPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論.
【答案】分析:(1)2a=2(2c),c=1,a2=4b2=3,由此能求出橢圓C的方程.
(2)設(shè)KO的中點(diǎn)為B(x,y),則點(diǎn)K(2x,2y),把K的坐標(biāo)代入橢圓中,得.由此能求出線段KF1的中點(diǎn)B的軌跡方程.
(3)過(guò)原點(diǎn)的直線L與橢圓相交的兩點(diǎn)M,N關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,設(shè)M(x,y)N(-x,-y),p(x,y).M,N,P在橢圓上,應(yīng)滿足橢圓方程,由此能夠證明kPM•KPN的值與點(diǎn)P的位置無(wú)關(guān),同時(shí)與直線L無(wú)關(guān).
解答:解:(1)2a=2(2c),(1分)
c=1,(2分)
a2=4b2=3,(3分)
橢圓C的方程為:.(4分)
(2)設(shè)KO的中點(diǎn)為B(x,y)則點(diǎn)K(2x,2y),(6分)
把K的坐標(biāo)代入橢圓中,
(8分)
線段KF1的中點(diǎn)B的軌跡方程為.(10分)
(3)過(guò)原點(diǎn)的直線L與橢圓相交的兩點(diǎn)M,N關(guān)于坐標(biāo)原點(diǎn)對(duì)稱
設(shè)M(x,y)N(-x,-y),p(x,y)(11分)
M,N,P在橢圓上,應(yīng)滿足橢圓方程,
,(12分)
,(13分)
kPM•KPN==.(15分)
故:kPM•KPN的值與點(diǎn)P的位置無(wú)關(guān),同時(shí)與直線L無(wú)關(guān).(16分)
點(diǎn)評(píng):本題主要考查橢圓標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,圓的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí).考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1(a>b>c>0,a2=b2+c2)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過(guò)橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且|PT|的最小值不小于
3
2
(a-c)

(1)求橢圓的離心率e的取值范圍;
(2)設(shè)橢圓的短半軸長(zhǎng)為1,圓F2與x軸的右交點(diǎn)為Q,過(guò)點(diǎn)Q作斜率為k(k>0)的直線l與橢圓相交于A,B兩點(diǎn),若OA⊥OB,求直線l被圓F2截得的弦長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
6
3
,且傾斜角為60°的直線l過(guò)點(diǎn)(0,-2
3
)
和橢圓C的右焦點(diǎn)F.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若已知D(3,0),點(diǎn)M,N是橢圓C上不重合的兩點(diǎn),且
DM
DN
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓C1
x2
4
+y2=1
C2
x2
16
+
y2
4
=1
判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說(shuō)明理由;
(2)寫出與橢圓C1相似且半短軸長(zhǎng)為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
(3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線l對(duì)稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•泉州模擬)如果兩個(gè)橢圓的離心率相等,那么就稱這兩個(gè)橢圓相似.已知橢圓C與橢圓Γ:
x2
8
+
y2
4
=1
相似,且橢圓C的一個(gè)短軸端點(diǎn)是拋物線y=
1
4
x2
的焦點(diǎn).
(Ⅰ)試求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)橢圓E的中心在原點(diǎn),對(duì)稱軸在坐標(biāo)軸上,直線l:y=kx+t(k≠0,t≠0)與橢圓C交于A,B兩點(diǎn),且與橢圓E交于H,K兩點(diǎn).若線段AB與線段HK的中點(diǎn)重合,試判斷橢圓C與橢圓E是否為相似橢圓?并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•通州區(qū)一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
1
2
,右焦點(diǎn)為F(1,0).
(I)求橢圓C的方程;
(II)求經(jīng)過(guò)點(diǎn)A(4,0)且與橢圓C相切的直線方程;
(III)設(shè)P為橢圓C上一動(dòng)點(diǎn),以PF為直徑的動(dòng)圓內(nèi)切于一個(gè)定圓E.求定圓E的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案