如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,點(diǎn)E、F分別是棱AB、BB1的中點(diǎn),則直線EF和BC1的夾角是
 
考點(diǎn):用空間向量求直線間的夾角、距離,異面直線及其所成的角
專(zhuān)題:空間角,空間向量及應(yīng)用
分析:通過(guò)建立空間直角坐標(biāo)系,利用向量的夾角公式即可得出.
解答: 解:如圖所示,建立空間直角坐標(biāo)系.
由于AB=BC=AA1,不妨取AB=2,
則E(0,1,0),F(xiàn)(0,0,1),C1(2,0,2).
EF
=(0,-1,1),
BC1
=(2,0,2).
cos<
EF
,
BC1
=
EF
BC1
|
EF
| |
BC1
|
=
2
2
8
=
1
2

∴異面直線EF和BC1的夾角為
π
3

故答案為:
π
3
點(diǎn)評(píng):本題考查了通過(guò)建立空間直角坐標(biāo)系和向量的夾角公式求異面直線的夾角,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線在平面外是指( 。
A、直線與平面沒(méi)有公共點(diǎn)
B、直線與平面相交
C、直線與平面平行
D、直線與平面最多只有一個(gè)公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
5
5
,則cos2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知O (0,0,0),A(2,-1,3),B(2,1,1).
(1)求|AB|的長(zhǎng)度;
(2)寫(xiě)出A、B兩點(diǎn)經(jīng)此程序框圖執(zhí)行運(yùn)算后的對(duì)應(yīng)點(diǎn)A0,B0的坐標(biāo),并說(shuō)出點(diǎn)A0,B0在空間直角坐標(biāo)系o-xyz中的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=t(t為非零常數(shù)),{an}的前n項(xiàng)和Sn滿足Sn+1=3Sn
(Ⅰ)當(dāng)t=1時(shí),求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若對(duì)任意n∈N*,都有λ>
n(n+1)
an
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面向量
a
=(-2,1),
b
=(λ,-1),若
a
b
的夾角是鈍角,則λ的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC三個(gè)頂點(diǎn)在同一個(gè)球面上,∠BAC=90°,AB=AC=2,若球心到平面ABC距離為1,則該球體積為(  )
A、2
3
π
B、4
3
π
C、6
3
π
D、8
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}是公差為2的等差數(shù)列,{bn}是公比為2的等比數(shù)列,若a1=b1=1
(1)求{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
2x-1>1
4-2x≤0
的解在數(shù)軸上表示為( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案