已知函數(shù)
.
(1)如果
存在零點,求
的取值范圍
(2)是否存在常數(shù)
,使
為奇函數(shù)?如果存在,求
的值,如果不存在,說明理由。
(1)
.(2)
試題分析:(1)函數(shù)的零點與方程的知識,通過極限的思維得到
的兩邊的范圍,(2)由于定義為R,所以根據(jù)f(0)=0,解出
的值,再把
代入用奇函數(shù)的定義論證.
試題解析:解:(1)令
得
,
由于
欲使
有零點,
(2) 易知函數(shù)
定義域為R.
如果
為奇函數(shù),則
,可得
此時
∴
,
所以,當(dāng)
時
為奇函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
的導(dǎo)函數(shù)是
,
在
處取得極值,且
.
(Ⅰ)求
的極大值和極小值;
(Ⅱ)記
在閉區(qū)間
上的最大值為
,若對任意的
總有
成立,求
的取值范圍;
(Ⅲ)設(shè)
是曲線
上的任意一點.當(dāng)
時,求直線OM斜率的最小值,據(jù)此判斷
與
的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,其中
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若直線
是曲線
的切線,求實數(shù)
的值;
(Ⅲ)設(shè)
,求
在區(qū)間
上的最小值.(
為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)當(dāng)
時,求函數(shù)
的極值;
(2)若函數(shù)
在定義域內(nèi)為增函數(shù),求實數(shù)m的取值范圍;
(3)若
,
的三個頂點
在函數(shù)
的圖象上,且
,
、
、
分別為
的內(nèi)角A、B、C所對的邊。求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
是函數(shù)
的一個極值點.
(1)求
與
的關(guān)系式(用
表示
),并求
的單調(diào)遞增區(qū)間;
(2)設(shè)
,若存在
使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
是R上的奇函數(shù),當(dāng)
時
取得極值
.
(I)求
的單調(diào)區(qū)間和極大值
(II)證明對任意
不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)若
在
是增函數(shù),求
的取值范圍;
(2)已知
,對于函數(shù)
圖象上任意不同兩點
,
,其中
,直線
的斜率為
,記
,若
求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
在點(1,2)處的切線與
的圖像有三個公共點,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
從邊長為10cm×16cm的矩形紙板的四角截去四個相同的小正方形,作成一個無蓋的盒子,則盒子容積的最大值為________
.
查看答案和解析>>