9.在△ABC中,角A、B、C所對的邊分別是a,b,c,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為$\sqrt{3}$.

分析 由條件利用正弦定理可得b2+c2-bc=4.再由余弦定理可得A=$\frac{π}{3}$,利用基本不等式可得bc≤4,當且僅當b=c=4時,取等號,此時,△ABC為等邊三角形,從而求得它的面積的值.

解答 解:△ABC中,∵a=2,且(2+b)(sinA-sinB)=(c-b)sinC,
∴利用正弦定理可得(2+b)(a-b)=(c-b)c,
即 b2+c2-bc=4,即b2+c2-4=bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴A=$\frac{π}{3}$.
再由b2+c2-bc=4,利用基本不等式可得 4≥2bc-bc=bc,
∴bc≤4,當且僅當b=c=2時,取等號,
此時,△ABC為等邊三角形,
它的面積為 $\frac{1}{2}$bc•sinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題主要考查正弦定理的應用,基本不等式在解三角形中的應用,考查了轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如表:
組號第一組第二組第三組第四組第五組
分組[50,60)[60,70)[70,80)[80,90)[90,100]
(I)求圖中a的值;
(II)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求第4組的至少有一位同學入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.對于橢圓C,$\frac{x{\;}^{2}}{a{\;}^{2}}$+$\frac{y{\;}^{2}}{b{\;}^{2}}$=1(a>b>0),c為橢圓的半焦距,e為離心率,過原點的直線與橢圓C交于A,B兩點(非頂點),點D在橢圓上,AD⊥AB,直線BD與x軸,y軸分別交于M,N.
(1)當e=$\frac{\sqrt{2}}{2}$時,證明:直線AM⊥x軸;
(2)求△OMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,2cos(A-C)+cos2B=1+2cosAcosC.
(1)求證:a,b,c依次成等比數(shù)列;
(2)若b=2,求u=|$\frac{{a}^{2}+{c}^{2}-5}{a-c}$|的最小值,并求u達到最小值時cosB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,tanAsin2B=tanBsin2A,則△ABC一定是( 。┤切危
A.銳角B.直角C.等腰D.等腰或直角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在△ABC中,已知acosB=bcosA,那么△ABC一定是( 。
A.等腰三角形B.直角三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在等比數(shù)列{an}中,a1=1,q=$\frac{1}{2}$,an=$\frac{1}{32}$,則n=(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若(a-2)(a-1)x2+2(a-2)x-4<0對一切x∈R恒成立,則實數(shù)a的取值范圍是($\frac{6}{5}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.數(shù)列{an}滿足a1=3,an-an•an+1=1,An表示{an}前n項之積,則A2016的值為( 。
A.-$\frac{1}{2}$B.$\frac{2}{3}$C.-1D.1

查看答案和解析>>

同步練習冊答案