如圖,邊長(zhǎng)為a的正方形ABCD中,點(diǎn)E、F分別在AB、BC上,且,將△AED、△CFD分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn),連結(jié)A¢B.

(Ⅰ)判斷直線EF與A¢D的位置關(guān)系,并說(shuō)明理由;

(Ⅱ)求二面角F-A¢B-D的大。

 

【答案】

(Ⅰ)異面垂直;(Ⅱ).

【解析】

試題分析:(Ⅰ)先證明A¢D⊥面A¢EF即可得EF與A¢D的位置關(guān)系是異面垂直;

(Ⅱ)先作出并證明ÐOHF是二面角F-A¢B-D的平面角,再利用解三角形的方法求出ÐOHF的大小.

試題解析:(Ⅰ)A¢D⊥EF.         1分

證明如下:因?yàn)锳¢D⊥A¢E,A¢D⊥A¢F,

所以A¢D⊥面A¢EF,又EFÌ面A¢EF,

所以A¢D⊥EF. 直線EF與A¢D的位置關(guān)系是異面垂直      4分

(Ⅱ)方法一、設(shè)EF、BD相交于O,連結(jié)A¢O,作FH⊥A¢B于H,              

連結(jié)OH,  因?yàn)镋F⊥BD,  EF⊥A¢D.

所以EF⊥面A¢BD,A¢BÌ面A¢BD,  所以A¢B⊥EF,又A¢B⊥FH,

故A¢B⊥面OFH,OHÌ面OFH,       所以A¢B⊥OH,

故ÐOHF是二面角F-A¢B-D的平面角.

,A¢E=A¢F=,EF=,則,

所以,△A¢EF是直角三角形,則,

,∴,

則A¢B=,所以

所以, tanÐOHF=,故ÐOHF=

所以二面角F-A¢B-D的大小為.  12分

方法二、設(shè)EF、BD相交于O,連結(jié)A¢O,作于G,可得A¢G⊥面BEDF,

,A¢E=A¢F=,EF=,則,

所以,△A¢EF是直角三角形,則

,則,

,,

所以,,則,

分別以BF、BE為空間直角坐標(biāo)系的x、y軸,建立如圖坐標(biāo)系,則,, ,故,,,

,,故面A¢BD的一個(gè)法向量,

設(shè)面A¢BF的一法向量為,則,

設(shè)二面角F-A¢B-D的平面角為,則,∴

故二面角F-A¢B-D的大小為.       12分

考點(diǎn):1.直線與平面的位置關(guān)系;  2.二面角.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(北京卷理14)如圖放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng).設(shè)頂點(diǎn)p(x,y)的軌跡方程是y=f(x),則f(x)的最小正周期為
 
;y=f(x)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為
 

說(shuō)明:“正方形PABC沿X軸滾動(dòng)”包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)A為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).類似地,正方形PABC可以沿x軸負(fù)方向滾動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖放置的邊長(zhǎng)為1的正三角形PAB沿x軸滾動(dòng),設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是
 
;(說(shuō)明:“正三角形PAB沿x軸滾動(dòng)”包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)A為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負(fù)方向逆時(shí)針滾動(dòng))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng).設(shè)頂點(diǎn)p(x,y)的軌跡方程是y=f(x),設(shè)f(x)的最小正周期為T,y=f(x)在其兩個(gè)相鄰零點(diǎn)間的圖象與x軸所圍區(qū)域的面積為S,則ST=
4(π+1)
4(π+1)
.(說(shuō)明:“正方形PABC沿x軸滾動(dòng)”包括沿x軸正方向和沿x軸負(fù)方向滾動(dòng).沿x軸正方向滾動(dòng)指的是先以頂點(diǎn)A為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)B落在x軸上時(shí),再以頂點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).類似地,正方形PABC可以沿x軸負(fù)方向滾動(dòng).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•洛陽(yáng)一模)如圖放置的邊長(zhǎng)為1的正三角形ABC沿x軸的正方向滾動(dòng),設(shè)頂點(diǎn)A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x).則f(x)在兩個(gè)相鄰零點(diǎn)間的圖象與x軸圍成的面積是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一個(gè)空間幾何體的主視圖和左視圖都是邊長(zhǎng)為1的正方 形,俯視圖是一個(gè)直徑為1的圓,那么這個(gè)幾何體的全面積為(  )

A.         B.            C.      D.

查看答案和解析>>

同步練習(xí)冊(cè)答案