精英家教網(wǎng)如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為
 
度.
分析:由于AB是直徑,根據(jù)圓周角定理可知∠ADB是直角,即AD⊥BC;根據(jù)等邊三角形三線合一的性質(zhì)知,DA是∠BAC的角平分線,由此可求得∠DAC的度數(shù).
解答:解:∵AB是⊙O的直徑,
∴∠ADB=90°,即AD⊥BC;
又∵△ABC是等邊三角形,
∴DA平分∠BAC,即∠DAC=
1
2
∠BAC=30°.
故答案為:30.
點評:此題主要考查了等邊三角形的性質(zhì)及圓周角定理的推論;圓周角定理的推論:半圓(。┖椭睆剿鶎Φ膱A周角是直角;等邊三角形三線合一:等邊三角形每條邊上的中線、高線和所對角的平分線互相重合.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,O為邊AB的中點,AB=4,D、E為△ABC的高線上的點,且|
OC
|=2
3
|
OD
|
,|
OC
|=
3
|
OE
|
.若以A,B為焦點,O為中心的橢圓過點D,建立適當?shù)闹苯亲鴺讼,記橢圓為M.
(1)求橢圓M的方程;
(2)過點E的直線l與橢圓M交于不同的兩點P,Q,點P在點E,Q之間,且
EP
EQ
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省儀征市高三第一次涂卡訓練數(shù)學試卷(解析版) 題型:填空題

如圖,在等邊△ABC中,P是邊AC上一點,連接BP,將△BCP繞點B逆時針旋轉(zhuǎn)60°,得到△BAQ,連接PQ.若BC=8,BP=7,則△APQ的周長是    

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為 ______度.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年甘肅省蘭州一中高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

如圖,在等邊△ABC中,O為邊AB的中點,AB=4,D、E為△ABC的高線上的點,且.若以A,B為焦點,O為中心的橢圓過點D,建立適當?shù)闹苯亲鴺讼,記橢圓為M.
(1)求橢圓M的方程;
(2)過點E的直線l與橢圓M交于不同的兩點P,Q,點P在點E,Q之間,且,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案