19.將函數(shù)y=sinxcosx的圖象向左平移$\frac{π}{4}$個(gè)單位,再向上平移$\frac{1}{2}$個(gè)單位,所得圖象的函數(shù)解析式是( 。
A.y=cos2xB.y=sin2xC.$y=\frac{1}{2}sin(2x+\frac{π}{4})+\frac{1}{2}$D.$y=\frac{1}{2}cos2x$

分析 先根據(jù)函數(shù)圖象平移的原則可知,平移后得到y(tǒng)=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+$\frac{1}{2}$,利用二倍角公式化簡(jiǎn)后即可得到答案.

解答 解:函數(shù)y=sinxcosx=$\frac{1}{2}$sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位得y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$),
再向上平移$\frac{1}{2}$個(gè)單位得y=$\frac{1}{2}$sin(2x+$\frac{π}{2}$)+$\frac{1}{2}$=$\frac{1}{2}$+$\frac{1}{2}$cos2x=cos2x.
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換和三角函數(shù)的倍角公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.$\overrightarrow{a}$,$\overrightarrow$為非零向量,且|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|+|$\overrightarrow$|,則( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$,$\overrightarrow$是共線向量且方向相反
C.$\overrightarrow{a}$∥$\overrightarrow$,且$\overrightarrow{a}$與$\overrightarrow$方向相同D.$\overrightarrow{a}$,$\overrightarrow$無論什么關(guān)系均可

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.一支田徑隊(duì)員有男運(yùn)動(dòng)員56人,女運(yùn)動(dòng)員42人,若采用分層抽樣的方法在全體運(yùn)動(dòng)員中抽出28人進(jìn)行體質(zhì)測(cè)試,則抽到進(jìn)行體質(zhì)測(cè)試的男運(yùn)動(dòng)員的人數(shù)為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足2$\overrightarrow{a}$+$\overrightarrow$=(0,-5,10),$\overrightarrow{c}$=(1,-2,-2),且$\overrightarrow$•$\overrightarrow{c}$=-18,則$\overrightarrow{a}$•$\overrightarrow{c}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14. 如圖,在正四棱柱ABCD-A1B1C1D1中,AA1=6,AB=2,M,N分別是棱B1B,BC的中點(diǎn).
(1)用向量方法證明:A1M∥平面D1AN;
(2)求A1D1與平面D1AN所成角的正弦值;
(3)在平面AA1B1B內(nèi)是否存在一點(diǎn)P,使得PD⊥平面D1AN?若存在,求出點(diǎn)P的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-2ax+1(a∈R).
(1)當(dāng)a=2時(shí),求f(x)在x∈[1,4]上的最值;
(2)當(dāng)x∈[1,4]時(shí),不等式f(x)≥x-3恒成立,求a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線l;y=k(x+2)與圓O:x2+y2=4相交于A、B兩點(diǎn),則“k=1”是“S△OAB=2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)a,b滿足($\frac{1}{2}$)a<($\frac{1}{2}$)b,則(  )
A.a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$B.log2a>log2bC.$\frac{1}{a}$<$\frac{1}$D.sina>sinb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)命題P:?x>0,x2≤1,則¬P為( 。
A.?x>0,x2<1B.?x>0,x2>1C.?x>0,x2>1D.?x>≤0,x2≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案