14.已知兩條不重合的直線m,n和兩個不重合的平面α,β有下列命題:
①若m⊥n,m⊥α,則n∥α;
②若m⊥α,n⊥β,則α∥β
③若m,n是兩條異面直線,m?α,n?β,m∥β,n∥α,則α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α.
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

分析 在①中,n∥α或n?α;在②中,α與β相交或平行;在③中,α與β相交或平行;在④中,由直線與平面垂直的判定定理得n⊥α.

解答 解:由兩條不重合的直線m,n和兩個不重合的平面α,β,知:
在①中,若m⊥n,m⊥α,則n∥α或n?α,故①錯誤;
在②中,若m⊥α,n⊥β,則α與β相交或平行,故②錯誤;
在③中,若m,n是兩條異面直線,m?α,n?β,m∥β,n∥α,
則α與β相交或平行,故③錯誤;
在④中,若α⊥β,α∩β=m,n?β,n⊥m,
則由直線與平面垂直的判定定理得n⊥α,故④正確.
故選:A.

點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關系的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知數(shù)列{an}滿足:a1=2,${a_{n+1}}=\frac{{1+{a_n}}}{{1-{a_n}}}({n∈{N^*}})$,則該數(shù)列的前2012項積a1•a2•…•a2011•a2012=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=x+sin2x+1,若f(a)=2,則f(-a)的值為(  )
A.0B.-1C.-2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=xe-x(x∈R),求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.為調(diào)查用電腦時間與視力下降是否有關系,現(xiàn)從某地網(wǎng)民中抽取100位進行調(diào)查.經(jīng)過計算得K2≈3.855,那么就有95%的把握認為用電腦時間與視圖下降有關系.
K2>K0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)已知i是虛數(shù)單位,若復數(shù)z滿足z(1+i)=2i,計算|z|;
(2)若復數(shù)(m2-5m+6)+(m2-3m)i(m為實數(shù),i為虛數(shù)單位)是純虛數(shù),求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.面面垂直的性質(zhì)定理符號表示如果α⊥β,α∩β=l,a?β,a⊥l,那么a⊥α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知直線ax+y+2=0及兩點P(-2,1)、Q(3,2),若直線與線段PQ相交,則a的取值范圍是( 。
A.-$\frac{3}{2}$≤a≤$\frac{4}{3}$B.a≤-$\frac{3}{2}$,或a≥$\frac{4}{3}$C.a≤0,或a≥$\frac{1}{3}$D.a≤-$\frac{4}{3}$,或a≥$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=sinx-2x-a,若f(x)在[0,π]上的最大值為-1,則實數(shù)a的值是1.

查看答案和解析>>

同步練習冊答案