在平面上給定一個△ABC,試判斷平面上是否存在這樣的點P,使得線段AP的中點為M,線段BM的中點為N,線段CN的中點為P?若存在,這樣的點P有幾個?若不存在,說明理由.
考點:空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:平面上是否存在這樣的點P,只有一個.作l∥AC,使l與AC的距離等于AC上高的
2
7
,作m∥BC,使m與BC距離等于BC上高的
1
7
,交點為P,點P為所求的點.
解答: 解:平面上是否存在這樣的點P,只有一個.
作l∥AC,使l與AC的距離等于AC上高的
2
7
,
作m∥BC,使m與BC距離等于BC上高的
1
7
,交點為P,
AP中點M,連結(jié)BM,連結(jié)CP,延長交BM于N,
則點P為所求的點.

證明:如圖,S1=S2=
1
7
S△ABC=S3,
S4=S5+S6=
1-
3
7
2
=
2
7
,
S2,S3同底PC,它們在PC上的高相等,
S2,S3在PC上的高相等,也是S5,S6在PN上的高,
S5=S6=
1
7

S5,S6的高=P到BM的距離,故BM=MN,
S5=S3,故CP=PN.
點評:本題考查滿足條件的點的判斷與求法,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其部分圖象如圖所示,且直線y=A與曲線y=f(x)(-
π
24
≤x≤
11π
24
)所圍成的封閉圖形的面積為π,則f(
π
8
)+f(
8
)+f(
8
)+…+f(
2014π
8
)(即
2014
i=1
f(
i•π
8
))的值為( 。
A、0
B、-1-
3
C、-1
D、-1+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且PA⊥底面ABCD,BD⊥PC,E是PA的中點.
(Ⅰ)求證:平面PAC⊥平面EBD;
(Ⅱ)若PA=AB=AC=2,求三棱錐P-EBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

作圖:
①作出y=|x-3|-|x+1|的函數(shù)圖象;
②作出y=
(x-1)2
+
|x|
x
的函數(shù)圖象;
③作出y=|-x2+4x+5|的函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中的相鄰兩項a2k-1、a2k是關(guān)于x的方程x2-(3k+2k)x+3k•2k=0的兩個根,且a2k-1≤a2k(k∈N*).
(Ⅰ)求a1,a3,a5,a7及寫出a2n(n∈N*且n≥4)(不必證明);
(Ⅱ)對于任意n∈N*且n≥4,猜想a2n與(2n)2的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復平面內(nèi)關(guān)于原點對稱的兩點對應(yīng)的復數(shù)為z1,z2,且滿足3z1+(z2-2)i=2z2-(1+z1)i,求z1,z2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|
5
x+2
≥1},B={x|2x+3≥4k},
(1)若A∪B=B,求實數(shù)k取值的集合C.
(2)若B⊆CRA,求實數(shù)k取值的集合D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知當a∈R且a≠1時,函數(shù)f(x)=(a-1)x2-ax-m的圖象和x軸總有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足an+an+1=
1
2
(n∈N*),a2=2,Sn是數(shù)列{an}的前n項和,則S21=
 

查看答案和解析>>

同步練習冊答案