A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}}{3}$ |
分析 由題意畫出圖形,過A作AO⊥平面BCD,垂足為O,則O為底面三角形的重心,由已知求出側(cè)棱長及底面BO的長,再由勾股定理得答案.
解答 解:如圖,過A作AO⊥平面BCD,垂足為O,則O為底面三角形的重心.
又A-BCD為正三棱錐,且BC=1,AB⊥AC,
∴AB=$\frac{\sqrt{2}}{2}$,AE=$\frac{\sqrt{3}}{2}$,則BO=$\frac{\sqrt{3}}{3}$.
則AO=$\sqrt{A{B}^{2}-B{O}^{2}}=\sqrt{(\frac{\sqrt{2}}{2})^{2}-(\frac{\sqrt{3}}{3})^{2}}=\frac{\sqrt{6}}{6}$.
故選:A.
點評 本題考查棱錐的結(jié)構(gòu)特征,考查空間想象能力和思維能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 以三個向量所在線段為棱一定可以作一個平行六面體 | |
B. | 設(shè)平行六面體的三條棱為$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$,$\overrightarrow{AD}$所在線段,則這一平行六面體的體對角線所對應(yīng)的向量是$\overrightarrow{AB}$+$\overrightarrow{A{A}_{1}}$+$\overrightarrow{AD}$ | |
C. | 若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{PA}$+$\overrightarrow{PB}$)成立,則點P一定是線段AB的中點 | |
D. | 在空間中,若$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則A,B,C,D四點共面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$ | B. | $\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}•\overrightarrow{n}|}$ | C. | -$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}||\overrightarrow{n}|}$ | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 銳角三角形 | C. | 鈍角三角形 | D. | 等腰三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com