分析 (1)求導(dǎo)數(shù),確定函數(shù)在[1,3]上單調(diào)遞減,[3,4]上單調(diào)遞增,即可求f(x)在x∈[1,4]上的最大值和最小值;
(2)在x∈[2,+∞]上,f′(x)=3x2-2ax-3≥0可得a≤$\frac{3{x}^{2}-3}{2x}$ 在x∈[2,+∞]上恒成立,只要求 $\frac{3{x}^{2}-3}{2x}$ 的最小值即可得到a的取值范圍.
解答 解:(1)a=4時(shí),f(x)=x3-4x2-3x,
∴f′(x)=3x2-8x-3,
∴函數(shù)在[1,3]上單調(diào)遞減,[3,4]上單調(diào)遞增,
∴f(x)在x∈[1,4]上的最大值為f(1)=-6,最小值為f(3)=-18;
(2)在x∈[2,+∞]上,f′(x)=3x2-2ax-3≥0,
可得a≤$\frac{3{x}^{2}-3}{2x}$ 在x∈[2,+∞]上恒成立,
∴只要求 $\frac{3{x}^{2}-3}{2x}$ 的最小值即可,而y=$\frac{3{x}^{2}-3}{2x}$.
y′=$\frac{6{x}^{2}+6}{4{x}^{2}}$恒大于零,
∴y在R上為增函數(shù),∴ymin=$\frac{9}{4}$,
∴a≤$\frac{9}{4}$.
點(diǎn)評(píng) 本題考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,0) | B. | (-3,0) | C. | (0,3) | D. | (0,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -26或$\frac{8}{3}$ | B. | -1或3 | C. | 8或-$\frac{8}{3}$ | D. | -8或$\frac{8}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com