(本小題滿分14分)在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中且.設.
(I)若,,,求方程在區(qū)間內的解集;
(II)若點是曲線上的動點.當時,設函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(III)根據(jù)本題條件我們可以知道,函數(shù)的性質取決于變量、和的值. 當時,試寫出一個條件,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”.【說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.】
(I)在內的解集為
(II)的最大值.
(III)使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”的充要條件是“當時,()或當時,()”.
【解析】解:(I)由題意,…………………………1分
當,,時,,…2分
,則有或,.
即或,. ……………4分
又因為,故在內的解集為.……5分
(II)由題意,是曲線上的動點,故. ……………6分
因此,,
所以,的值域. ……………8分
又的解為0和,故要使恒成立,只需
,而,
即,所以的最大值. …………………10分
(III)解:因為,
設周期.
由于函數(shù)須滿足“圖像關于點對稱,且在處取得最小值”.
因此,根據(jù)三角函數(shù)的圖像特征可知,
,.
又因為,形如的函數(shù)的圖像的對稱中心都是的零點,故需滿足,而當,時,
因為,;所以當且僅當,時,的圖像關于點對稱;此時,,.
(i)當時,,進一步要使處取得最小值,則有,;又,則有,;因此,由可得,;
(ii)當時,,進一步要使處取得最小值,則有,;又,則有,;因此,由可得,;
綜上,使得函數(shù)滿足“圖像關于點對稱,且在處取得最小值”的充要條件是“當時,()或當時,()”. ……………………………………………………14分
(第III小題將根據(jù)學生對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分)
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com