分析:(1)由已知中函數(shù)f(x)=m-
為奇函數(shù),滿足f(-x)+f(x)=0,可得m的值,進而可分析出函數(shù)的單調(diào)性,結(jié)合函數(shù)的奇偶性,將不等式f(1-x)+f(1-x
2)>0化為二次不等式,解答可得答案.
(2)若對于任意x
1∈[0,1],總存在x
2∈[0,1],使得g(x
2)=f(x
1)成立,兩個函數(shù)的值域滿足[0,
]⊆[-2a.5-a],構(gòu)造關(guān)于a的不等式組,解不等式組可得答案.
解答:解:(1)∵函數(shù)f(x)=m-
為奇函數(shù),
∴f(-x)+f(x)=m-
+m-
=2m-
=2m-2=0
解得m=1
∴f(x)=1-
則f(x)在R為增函數(shù)
故f(1-x)+f(1-x
2)>0可化為f(1-x)>-f(1-x
2)
即f(1-x)>f(x
2-1)
即1-x>x
2-1
即x
2+x-2=(x+2)(x-1)<0
解得x∈(-2,1)
(2)當(dāng)x
1∈[0,1],f(x
1)∈[f(0),f(1)]=[0,
]
∵函數(shù)g(x)=ax
2+5x-2a(a>0)的圖象是開口朝上,且以直線x=-
為對稱軸的拋物線.
∴函數(shù)g(x)=ax
2+5x-2a(a>0)在[0,1]上為增函數(shù)
當(dāng)x
2∈[0,1]時,g(x
2)∈[g(0),g(1)]=[-2a.5-a]
若對于任意x
1∈[0,1],總存在x
2∈[0,1],使得g(x
2)=f(x
1)成立,
則[0,
]⊆[-2a.5-a]
即
解得:a∈(0,
]
點評:本題考查的知識點是函數(shù)的奇偶性,函數(shù)的單調(diào)性,存在性問題,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度均大.