已知().
⑴求的單調(diào)區(qū)間;
⑵若在內(nèi)有且只有一個極值點, 求a的取值范圍.
⑴①當(dāng)時,在和單調(diào)遞增,在單調(diào)遞減;②當(dāng)時,單調(diào)遞增;
⑵.
【解析】(1)先求出,然后再求出
當(dāng)時,f(x)的增區(qū)間為R,沒有減區(qū)間;當(dāng)時,再求出求出其單調(diào)增(減)區(qū)間.
(2) 若在上只有一個極值點,須滿足且要滿足.據(jù)此建立關(guān)于a的不等式組求出a的取值范圍.
解:⑴,;
①當(dāng)時,即時,方程有兩個根,
分別為,;故在和單調(diào)遞增,在單調(diào)遞減;
②當(dāng)時,單調(diào)遞增;
⑵由在上只有一個極值點,知,即;
且要滿足,解得,綜合得.
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年重慶市七校聯(lián)盟高三上學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)求在區(qū)間上最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省德州市高三上學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(I)討論的單調(diào)性;
(Ⅱ)若在(1,+)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆遼寧省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
【解析】(1)求導(dǎo)令導(dǎo)數(shù)小于零.
(2)利用導(dǎo)數(shù)列表求極值,最值即可.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:黑龍江省雙鴨山一中09-10學(xué)年高二下學(xué)期期中考試(理) 題型:解答題
已知函數(shù)
(Ⅰ)求的單調(diào)減區(qū)間;
(Ⅱ)若在區(qū)間[-2,2].上的最大值為20,求它在該區(qū)間上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com