精英家教網 > 高中數學 > 題目詳情
設籃球隊A與B進行比賽,若有一隊先勝4場則宣告比賽結束,假定A、B在每場比賽中獲勝的概率都為0.5.試求需要比賽場數的平均值.
【答案】分析:由題意知比賽場數ξ的可能取值是4、5、6、7,若4場結束,只有兩種情況;若5場結束,且A勝出,則A負2場,A所負一場不可能是第5場,只可能是前4場中某一場,共有4種情況;若B勝出,亦有4種情況.若6場結束,且A勝出,則A負2場,共有10種情況;若7場結束,且A勝出,則A負3場,共有20種情況,列出分布列,得到期望.
解答:解:由題意知比賽場數ξ的可能取值是4、5、6、7
若4場結束,只有兩種情況:A四場連勝或連負,每種情況發(fā)生的概率是
∴總概率為;
若5場結束,且A勝出,則A只負1場,A所負一場不可能是第5場,只可能是前4場中某一場,共有4種情況;
同樣,若B勝出,亦有4種情況.
每種情況發(fā)生的概率是,總概率為;
若6場結束,且A勝出,則A負2場,共有10種情況,
若B勝出,亦有10種情況.
每種情況發(fā)生的概率是總概率為;
若7場結束,且A勝出,則A負3場,共有20種情況,
若B勝出,亦有20種情況.
每種情況發(fā)生的概率是,總概率為
∴比賽場次的數學期望=4×=
即Eξ=
點評:本題考查獨立重復試驗,理解n次獨立重復試驗的模型及二項分布,并能解答一些簡單的實際問題. 能進行一些與n次獨立重復試驗的模型及二項分布有關概率的計算.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設籃球隊A與B進行比賽,若有一隊先勝4場則宣告比賽結束,假定A、B在每場比賽中獲勝的概率都為0.5.試求需要比賽場數的平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:022

設籃球隊AB進行比賽,若有一隊先勝4場,則比賽宣告結束,假定A、B在每場比賽中獲勝的概率都是,需要比賽的場數的數學期望是________

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:022

設籃球隊AB進行比賽,若有一隊先勝4場,則比賽宣告結束,假定AB在每場比賽中獲勝的概率都是,需要比賽的場數的數學期望是________。

查看答案和解析>>

科目:高中數學 來源: 題型:

設排球隊A與B進行比賽,規(guī)定若有一隊勝四場,則為獲勝隊,已知兩隊水平相當

   (1)求A隊第一、五場輸,第二、三、四場贏,最終獲勝的概率;

   (2)若要決出勝負,平均需要比賽幾場?

查看答案和解析>>

同步練習冊答案