1、觀察下列等式:
①cos2α=2 cos2 α-1;
②cos 4α=8 cos4 α-8 cos2 α+1;
③cos 6α=32 cos6 α-48 cos4 α+18 cos2 α-1;
④cos 8α=128 cos8α-256cos6 α+160 cos4 α-32 cos2 α+1;
⑤cos 10α=mcos10α-1280 cos8α+1120cos6 α+ncos4 α+p cos2 α-1;
可以推測(cè),m-n+p=
962
分析:本小題考查三角變換、類(lèi)比推理等基礎(chǔ)知識(shí),考查同學(xué)們的推理能力等.觀察等式左邊的α的系數(shù),等式右邊m,n,p的變化趨勢(shì),我們不難歸納出三個(gè)數(shù)的變化規(guī)律,進(jìn)而得到結(jié)論.
解答:解:因?yàn)?=21,8=23,32=25,…,128=27
所以m=29=512;
觀察可得n=-400,p=50,
所以m-n+p=962.
故答案為:962
點(diǎn)評(píng):歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:
①cos2α=2cos2α-1;
②cos4α=8cos4α-8cos2α+1;
③cos6α=32cos6α-48cos4α+18cos2α-1;
④cos8α=126cos8α-256cos6α+140cos4α-32cos2α+1;
⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1.
可以推測(cè)m+n+p=
162
162

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列等式:①cos2α=2cos2α-1;
②cos4α=8cos4α-8cos2α+1;
③cos6α=32cos6α-48cos4α+18cos2a-1;
④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1
⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+50cos2α-1
可以推測(cè),m-n=
912
912

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省福州市八縣(市)協(xié)作校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)卷 題型:填空題

觀察下列等式:

① cos2α=2 cos2 α-1;

② cos 4α=8 cos4 α-8 cos2 α+1;

③ cos 6α=32 cos6 α-48 cos4 α+18 cos2 α-1;

④ cos 8α= 128 cos8α-256cos6 α+160 cos4 α-32 cos2 α+1;

⑤ cos 10α=mcos10α-1280 cos8α+1120cos6 α+ncos4 α+p cos2 α-1;

可以推測(cè),m-n+p=________。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省杭州市高二第二學(xué)期3月月考理科數(shù)學(xué)試卷 題型:填空題

觀察下列等式:

①cos2α=2cos2α-1;

②cos4α=8cos4α-8cos2α+1;

③cos6α=32cos6α-48cos4α+18cos2α-1;

④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;

⑤cos10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1.

可以推測(cè),m-n+p=________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案