分析 (1)根據(jù)中位線定理得OE∥AD,OF∥AP,故而平面EFO∥平面PAD;
(2)由FO⊥PA,PA⊥平面ABCD,得出FO⊥平面ABCD;
(3)由OE∥AD,OF∥AP可得∠FEO=∠PDA=30°.
解答 證明:(1)∵O,E,F(xiàn)分別是AC,AB,PC的中點,
∴FO∥PA,EO∥BC,
又BC∥AD,∴EO∥AD,
又OE∩OF=O,PA∩AD=A,
∴平面EFO∥平面PAD.
(2)∵FO⊥PA,PA⊥平面ABCD,
∴FO⊥平面ABCD.
(3)∵FO⊥平面ABCD,
∴∠FEO即為EF與平面ABCD所成的角,
∵OE∥AD,OF∥AP,
∴∠FEO=∠PDA=30°,
即EF與平面ABCD所成角的大小為30°.
點評 本題考查了面面平行的判定,線面垂直的判定,線面角的計算,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {3,4} | C. | {0,1,2} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{13}{14}$ | D. | $\frac{11}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{9}$ | B. | $\frac{10}{3}$ | C. | $\frac{16}{3}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-\frac{1}{2},\frac{1}{4})$ | B. | $(-\frac{1}{2},\frac{1}{2})$ | C. | $(\frac{1}{4},1)$ | D. | $(\frac{1}{2},1)$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com