如圖,在直三棱柱ABC-A1B1C1中,E是BC的中點(diǎn)。

(1)求異面直線AE與A1C所成的角;

(2)若G為C1C上一點(diǎn),且EG⊥A1C,試確定點(diǎn)G的位置;

(3)在(2)的條件下,求二面角A1-AG-E的大小(文科求其正切值)。

(1)

(2)G是CC1的中點(diǎn)

(3) 故二面角的平面角是π-arctan 

(文)二面角的平面角的正切值為-


解析:

(1)取B1C1的中點(diǎn)E1,連A1E1,E1C,則AE∥A1E1,∴∠E1A1C是異面直線AE與A1C所成的角。設(shè),則

中, 。

所以異面直線AE與A1C所成的角為。  ------------------4分

(2).由(1)知,A1E1⊥B1C1,又因?yàn)槿庵鵄BC-A1B1C1是直三棱柱

⊥BCC1B1,又EG⊥A1 CE1⊥EG.

=∠GEC  ~

所以G是CC1的中點(diǎn)             ---------------------------- --8分

(3)連結(jié)AG,設(shè)P是AC的中點(diǎn),過點(diǎn)P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC.

平面ABC⊥平面ACC1A1   EP⊥平面ACC1A

而PQ⊥AG   EQ⊥AG.∠PQE是二面角C-AG-E的平面角.

由EP=a,AP=a,PQ=,得

所以二面角C-AG-E的平面角是arctan,而所求二面角是二面角C-AG-E的補(bǔ)角,故二面角的平面角是π-arctan  ------------------------12分

(文)二面角的平面角的正切值為-。------------------------12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案