F1,F(xiàn)2是橢圓
x2
9
+
y2
7
=1
的兩個(gè)焦點(diǎn),A為橢圓上一點(diǎn),且向量
AF1
F1F2
的夾角為
4
,則△AF1F2的面積為( 。
分析:先設(shè)|AF1|=x則可利用橢圓的定義表示出|AF2|代入△AF1F2中的余弦定理求得x,最后利用三角形面積公式求得答案.
解答:解:設(shè)|AF1|=x,則根據(jù)橢圓的定義可知|AF2|=6-x
在△AF1F2中由余弦定理可知cos
4
=
x2+8-(6-x) 2
2
2
x
=-
2
2
,求得x=
7
4

∴△AF1F2的面積為
1
2
x•2
2
•sin
4
=
7
2

故選 C
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì),解三角形問(wèn)題.考查了基礎(chǔ)知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F1、F2是橢圓 x2+2y2=2的兩個(gè)焦點(diǎn),過(guò)F2作傾斜角為45°的弦AB,則△ABF1的面積是(  )
A、
2
3
3
B、
4
2
3
C、
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)二模)已知點(diǎn)F1、F2是橢圓x2+2y2=2的兩個(gè)焦點(diǎn),點(diǎn)P是該橢圓上的一個(gè)動(dòng)點(diǎn),那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點(diǎn),P為橢圓短軸的一個(gè)端點(diǎn),且△F1PF2為正三角形,則該橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓x2+2y2=4的焦點(diǎn),B(0,
2
)
,則
BF1
BF2
的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點(diǎn),P為橢圓上一個(gè)點(diǎn),∠F1PF2=60°,|F1F2|為|PF1|與|PF2|的等比中項(xiàng),則該橢圓的離心率為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案