A. | 5$\sqrt{3}$ | B. | 5 | C. | 5$\sqrt{2}$ | D. | 10$\sqrt{3}$ |
分析 由已知利用余弦定理可求cosC,進而可求sinC,利用三角形面積公式即可得解.
解答 解:在△ABC中,∵a2+b2-c2=ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{π}{3}$,sinC=$\frac{\sqrt{3}}{2}$,
又∵ab=20,
∴△ABC面積S=$\frac{1}{2}$absinC=$\frac{1}{2}×20×\frac{\sqrt{3}}{2}$=5$\sqrt{3}$.
故選:A.
點評 本題主要考查了余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1),(3,+∞) | B. | ($\frac{1}{2}$,3) | C. | (-∞,$\frac{1}{2}$),(3,+∞) | D. | (1,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 位置①處 | B. | 位置②處 | C. | 位置③處 | D. | 位置④處 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com