求函數(shù)y=x2-3x+2的單調(diào)遞減區(qū)間.
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用二次函數(shù)的圖象和性質(zhì)即可得到結(jié)論.
解答: 解:∵二次函數(shù)的對稱軸為x=-
-3
2
=
3
2
,拋物線開口向上,
∴函數(shù)y=x2-3x+2的單調(diào)遞減區(qū)間為(-∞,
3
2
].
點(diǎn)評:本題主要考查二次函數(shù)的單調(diào)區(qū)間的求解,根據(jù)二次函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

畫出下列函數(shù)圖象并寫出函數(shù)的單調(diào)區(qū)間.
(1)y=-x2+2|x|+1;
(2)y=|-x2+2x+3|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2011
1-x
-
2012
1+x
的定義域是集合A,函數(shù)g(x)=
2012
1+a-x
+
2013
x-2a
的定義域是集合B,若A∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+2x-3<0},B={x|x2-2x≥0},求∁R(A∪B),(∁RA)∩B,A∪(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題r(x):?x∈R,x2-2x+1-
2
>m;s(x):?x∈R,x2+mx+1>0,如果r(x)與s(x)中有且僅有一個是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},全集U=R.
(1)若A∩B=∅,求實(shí)數(shù)a的取值范圍.
(2)若∁UB?A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C頂點(diǎn)在原點(diǎn),焦點(diǎn)F在x正半軸上,拋物線C上點(diǎn)(1,t)到其準(zhǔn)線距離為
5
4

(Ⅰ)求拋物線C方程.
(Ⅱ)如圖:若斜率為1的直線l交拋物線C于不同兩點(diǎn)P,Q,在x軸上有兩點(diǎn)M,N,且PF=MF,QF=FN,直線MP,NQ交于點(diǎn)T,連結(jié)PF,QF,TF,記 S1=S△TFP,S2=S△QFT,S3=S△PQT
(1)證明:直線PM與拋物線C相切.
(2)求
S1S2
S32
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={x|x≥-4},集合A={x|-1<x≤3},B={x|0≤x<5},求A∩B,(∁UA)∪B,A∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知
AB
=(1,-2),
BC
=(2,1),
CD
=(6,-2),求證A、C、D三點(diǎn)共線.
(2)當(dāng)|
a
|=1,|
b
|=2,
a
b
夾角60°,試確定實(shí)數(shù)k的值使k
a
-
b
a
+
b
垂直.

查看答案和解析>>

同步練習(xí)冊答案