已知an=
2n-1
n+1
(2+
1
n
)
m
1≤n≤100
 
n>101
(正整數(shù)m為常數(shù)),則
lim
n→∞
an
=
2m
2m
分析:將積的極限問題,等價(jià)轉(zhuǎn)化為極限的積,故可求
解答:解:由題意,
lim
n→∞
an=
lim
n→∞
(2+
1
n
)
m
 =[
lim
n→∞
(2+
1
n
)]
m
=2m

故答案為:2m
點(diǎn)評(píng):本題以數(shù)列為載體,考查數(shù)列的極限,關(guān)鍵是理解極限的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知an=
2n-1
n+1
(1+
1
n
)
p
(p
為常數(shù)) 
1≤n≤100
n>101
,則
lim
n→∞
an
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
圖象上的任意兩點(diǎn),點(diǎn)M(
1
2
y0)
為線段AB的中點(diǎn).
(1)求:y0的值.
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
),  (n≥2,且n∈N*)
,求:Sn
(3)在 (2)的條件下,已知an=
2
3
                     (n=1) 
1
(Sn+1)(Sn+1+1)
 (n≥2)
,記Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<λ(Sn+1+1)對(duì)一切n∈N*都成立,求:λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知an=
2n-1
n+1
(2+
1
n
)
m
1≤n≤100
 
n>101
(正整數(shù)m為常數(shù)),則
lim
n→∞
an
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知an=
2n-1
n+1
(1+
1
n
)
p
(p
為常數(shù)) 
1≤n≤100
n>101
,則
lim
n→∞
an
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案