如圖,設是雙曲線的左、右焦點,過作與漸近線平行的直線分別交軸和雙曲線右支于點,過作直線的垂線,垂足為,若,則雙曲線的離心率為(  )

A.             B.              C.2                D.3

 

【答案】

B

【解析】

試題分析:雙曲線的焦點(-c,0),(c,0),直線的方程為的方程為,解方程組得M(),而,所以,Q(,),代入可得,離心率為,故選B。

考點:雙曲線的幾何性質(zhì),直線方程。

點評:中檔題,確定雙曲線的離心率,關鍵是確定a,b,c,e的關系,本題從P,M,Q的關系入手,得到Q的坐標,代入雙曲線方程得到e的表達式。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•天津模擬)如圖,橢圓
x
2
 
a
2
 
+
y
2
 
b2
=1(a>b>0)
與一等軸雙曲線相交,M是其中一個交點,并且雙曲線在左、右頂點分別是該橢圓的左、右焦點F1、F2,雙曲線的左、右焦點分別是橢圓左、右頂點,△MF1F2的周長為(4
2
+1
),設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A,B和C,D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,求證:k1•k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)設
6
<m<4
6
,求向量
OF
FQ
的夾角θ
正切值的取值范圍;
(2)設以O為中心,F(xiàn)為焦點的雙曲線經(jīng)過點Q(如圖),|
OF
|=c,m=(
6
4
-1)c2
,當|
OQ
|
取得最小值時,求此雙曲線的方程.
(3)設F1為(2)中所求雙曲線的左焦點,若A、B分別為此雙曲線漸近線l1、l2上的動點,且2|AB|=5|F1F|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海)如圖,已知雙曲線C1
x2
2
-y2=1
,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
(1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
(3)求證:圓x2+y2=
1
2
內(nèi)的點都不是“C1-C2型點”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖點F為雙曲線C的左焦點,左準線l交x軸于點Q,點P是l上的一點|PQ|=|FQ|=1,且線段PF的中點M在雙曲線C的左支上.
(1)求雙曲線C的標準方程;
(2)若過點F的直線m與雙曲線C的左右兩支分別交于A、B兩點,設
FB
FA
,當λ∈[6,+∞)時,求直線m的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案