分析 (1)推導(dǎo)出A1E∥D1F,BE∥CF,從而平面A1EB∥平面D1FC,由此能證明BM∥平面CD1F.
(2)作GH⊥EF,垂足為H,連接A1H,作GT∥BE交EF于點T,則TG⊥GC,以點G為原點,分別以GC、GT、GA1所在直線為x、y、z軸,建立如空間直角坐標(biāo)系,利用向量法能求出二面角M-BF-C的余弦值.
解答 證明:(1)在圖甲中,由題意知AE∥DF,
從而在圖乙中有A1E∥D1F
又BE∥CF,BE∩A1E,D1F∩CF=F,
A1E,BE?平面A1EB,D1F,CF?平面D1FC,
∴平面A1EB∥平面D1FC,
又BM?平面A1EB,∴BM∥平面CD1F.
(2)解:如圖,在圖乙中作GH⊥EF,垂足為H,連接A1H,由于A1G⊥平面EBCF,則A1G⊥EF,
∴EF⊥平面A1GH,則EF⊥A1H,圖甲中有EF⊥AH,
又GH⊥EF,則A、G、H三點共線,
設(shè)CF的中點為N,則NF=1,可證△ABG≌△ENF,
∴BG=NF=1,則AG=$\sqrt{10}$;
又由△ABG∽△AHE,得A1H=AH=$\frac{AB•AE}{AG}$=$\frac{6}{\sqrt{10}}$,
于是,HG=AG-AH=$\frac{4}{\sqrt{10}}$,
在Rt△A1GH中,A1G=$\sqrt{{A}_{1}{H}^{2}-H{G}^{2}}$=$\sqrt{(\frac{6}{\sqrt{10}})^{2}-(\frac{4}{\sqrt{10}})^{2}}$=$\sqrt{2}$,
作GT∥BE交EF于點T,則TG⊥GC,
以點G為原點,分別以GC、GT、GA1所在直線為x、y、z軸,建立如圖丙所示的空間直角坐標(biāo)系,
則G(0,0,0),E(-1,1,0),F(xiàn)(2,2,0),A1(0,0,$\sqrt{2}$),
B(-1,0,0),M(-$\frac{1}{2},\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),C(2,0,0),
$\overrightarrow{BF}$=(3,2,0),$\overrightarrow{BM}$=($\frac{1}{2}$,$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{BC}$=(3,0,0),
設(shè)平面BFM的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BF}=3x+2y=0}\\{\overrightarrow{n}•\overrightarrow{BM}=\frac{1}{2}x+\frac{1}{2}y+\frac{\sqrt{2}}{2}z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,-3,$\frac{\sqrt{2}}{2}$),
平面BFC的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)二面角M-BF-C的平面角為θ,
則cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{\frac{\sqrt{2}}{2}}{\sqrt{\frac{27}{2}}}$=$\frac{\sqrt{3}}{9}$.
∴二面角M-BF-C的余弦值為$\frac{\sqrt{3}}{9}$.
點評 熟練掌握線面平行的判定定理、三角形的相似與全等的判定定理和性質(zhì)定理、通過建立空間直角坐標(biāo)系利用法向量的夾角求二面角的方法等知識與方法是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | [-1,1] | C. | {-1,-3,1,3} | D. | {-3,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{5}{3}-\frac{10}{3}$i | B. | -$\frac{5}{3}+\frac{10}{3}i$ | C. | 2+i | D. | 2-i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com