(文科)在空間四邊形SABC中,G是底面三角形ABC的重心,M是棱SA上的一點(diǎn),若MG∥平面SBC,則SM:MA=(  )
A、1:1B、2:1
C、1:2D、2:3
考點(diǎn):棱錐的結(jié)構(gòu)特征
專題:空間位置關(guān)系與距離
分析:取BC中點(diǎn)D,連結(jié)SD,AD,MG,則G在AD上,由已知條件推導(dǎo)出MG∥SD,SM:MA=DG:GA,由此利用重心性質(zhì)能求出結(jié)果.
解答: 解:如圖,取BC中點(diǎn)D,連結(jié)SD,AD,MG,則G在AD上,
∵G是底面三角形ABC的重心,M是棱SA上的一點(diǎn),MG∥平面SBC,
∴MG∥SD,
∴SM:MA=DG:GA=1:2.
故選:C.
點(diǎn)評(píng):本題考查兩條線段的比值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意重心性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x2-3x≤0},N={x|y=ln(x-2)},則Verm圖中陰影部分表示的集合是( 。
A、[2,3]
B、(2,3]
C、[0,2]
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合P={0,1,2},M={x∈R|x2≤9},則P∩M=( 。
A、{1,2}
B、{0,1,2}
C、{x|0≤x<3}
D、{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知反比例函數(shù)y=
k
x
的圖象如圖所示,則二次函數(shù)y=2kx2-4x+k2的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,
AR
=2
RB
,
CP
=2
PR
,若
AP
=m
AB
+n
AC
,則m+n=(  )
A、1
B、
8
9
C、
7
9
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a=log70.3,b=0.37,c=70.3,則( 。
A、a<c<b
B、b<c<a
C、a<b<c
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若m∈R,方程x3-3x+m=0在區(qū)間[0,1]上不等的實(shí)根( 。
A、有3個(gè)B、有2個(gè)
C、沒(méi)有D、至多有一個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2x+1),g(x)=log2(2x-1),若F(x)=g(x)-f(x)-m在[1,2]上有零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校要從演講初賽勝出的4名男生和2名女生中任選3人參加決賽.
(Ⅰ)設(shè)隨機(jī)變量ξ表示所選的3個(gè)人中女生的人數(shù),求ξ的分布列和數(shù)學(xué)期望;
(Ⅱ)求所選出的3人中至少有一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案