已知平面向量不共線,若存在非零實數(shù)x,y,使得   

(1)若時,求x,y的值。

(2)若, 且,試求函數(shù)的表達式

 (1)y=-1,x=1或-2 ---------4分

(2)        --8分------     f(x)=8x-4x3--------------12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•廣東)設
a
是已知的平面向量且
a
0
,關于向量
a
的分解,有如下四個命題:
①給定向量
b
,總存在向量
c
,使
a
=
b
+
c
;
②給定向量
b
c
,總存在實數(shù)λ和μ,使
a
b
c
;
③給定單位向量
b
和正數(shù)μ,總存在單位向量
c
和實數(shù)λ,使
a
b
c
;
④給定正數(shù)λ和μ,總存在單位向量
b
和單位向量
c
,使
a
b
c
;
上述命題中的向量
b
c
a
在同一平面內且兩兩不共線,則真命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在以下四個命題中,不正確的個數(shù)為( 。
(1)若
a
b
-
c
都是非零向量,則
a
 • 
b
=
a
 • 
c
a
⊥(
b
-
c
)的充要條件

(2)已知不共線的三點A、B、C和平面ABC外任意一點O,點P在平面ABC內的充要條件是存在x,y,z∈R,
OP
=x
OA
+y
OB
+z
OC
且x+y+z=1
(3)空間三個向量
a
,
b
,
c
,若
a
b
,
 b
c
,  則
a
c

(4)對于任意空間任意兩個向量
a
, 
b
,
a
b
的充要條件是存在唯一的實數(shù)λ,使
a
b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面關于向量的結論中,
(1)|
AB
|=|
BA
|;
(2)
AB
+
BC
+
CD
+
DA
=
0
;
(3)若
a
b
=0
,則
a
b

(4)若向量
AB
平移后,起點和終點的發(fā)生變化,所以
AB
也發(fā)生變化;
(5)已知A、B、C、D四點滿足任三點不共線,但四點共面,O是平面ABCD外任一點,且
OA
=2x•
OB
+3y•
OC
+4z•
OD
,則2x+3y+4z=1.
其中正確的序號為
(1)(2)(3)(5)
(1)(2)(3)(5)

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆河北省高二上學期第二次月考理科數(shù)學試卷 題型:填空題

下面關于向量的結論中,

(1);(2);(3)若 ,則;

(4)若向量平移后,起點和終點的發(fā)生變化,所以也發(fā)生變化;

(5)已知A、B、C、D四點滿足任三點不共線,但四點共面,O是平面ABCD外任一點,且其中正確的序號為     

 

查看答案和解析>>

同步練習冊答案