已知平面內(nèi)兩點(diǎn)(-1,1),(1,3).
(Ⅰ)求過兩點(diǎn)的直線方程;
(Ⅱ)求過兩點(diǎn)且圓心在軸上的圓的方程.
(Ⅰ) ;(Ⅱ)
【解析】
試題分析:(Ⅰ)可用兩點(diǎn)式直接求直線方程,也可先求斜率再用點(diǎn)斜式求直線方程。(Ⅱ)可用直接法求圓心和半徑,因?yàn)橄?/span>的中垂線過圓心,又因?yàn)閳A心在軸上從而確定圓心,再用兩點(diǎn)間距離公式求半徑;還可以用待定系數(shù)法求圓的方程,本題設(shè)圓的標(biāo)準(zhǔn)方程較好,再根據(jù)已知條件3個列出方程,解方程組即可求出未知量,從而得圓的方程。
試題解析:【解析】
(Ⅰ),2分
所以直線的方程為,
即.4分
(Ⅱ)因?yàn)?/span>的中點(diǎn)坐標(biāo)為,的中垂線為,
又因?yàn)閳A心在軸上,解得圓心為,6分
半徑, 8分
所以圓的方程為 .10分
考點(diǎn):直線方程及圓的方程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016屆黑龍江泰來第一中學(xué)高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知M={x|y=x2-2},N={y|y=x2-2},則M∩N等于( )
A. N B. M C. R D. Φ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆遼寧省高一下學(xué)期期初入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:選擇題
下列四個命題中正確的是( )
①若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;
②若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;
③垂直于同一直線的兩條直線相互平行;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.
A. ①和② B. ②和③ C. ③和④ D. ②和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆遼寧省五校高一上學(xué)期期末聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)是x軸上的不同兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2,|PA|=|PB|,若直線PA的方程為,則直線PB的方程是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆遼寧大連教育學(xué)院高一第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知點(diǎn)動點(diǎn)P滿足.
(Ⅰ)若點(diǎn)的軌跡為曲線,求此曲線的方程;
(Ⅱ)若點(diǎn)在直線:上,直線經(jīng)過點(diǎn)且與曲線有且只有一個公共點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆遼寧大連教育學(xué)院高一第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知滿足,則的最小值為( )
A.3 B.5 C.9 D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆遼寧大連教育學(xué)院高一第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
過點(diǎn)且與直線平行的直線方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆貴州遵義湄潭中學(xué)高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
已知的值為( )
A.-2 B.2 C. D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆福建省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知實(shí)數(shù),滿足,則的最小值為___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com