函數(shù)f(x)=1+x+cosx在(0,2π)上是( 。
A、增函數(shù)
B、減函數(shù)
C、在(0,π)上增,在(π,2π)上減
D、在(0,π)上減,在(π,2π)上增
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和函數(shù)的單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:∵f(x)=1+x+cosx,
∴f′(x)=1-sinx≥0,
即函數(shù)f(x)單調(diào)遞增,
故選:A
點(diǎn)評:本題主要考查函數(shù)單調(diào)性的判斷,求函數(shù)的導(dǎo)數(shù),利用函數(shù)和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=-
2
3
與x=1時(shí)都取得極值,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

大前提:對任意正整數(shù)a,b,a+b≥2
ab
;小前提:x+
1
x
≥2
x
1
x
,結(jié)論;所以x+
1
x
≥2,以上推理過程中的錯(cuò)誤為(  )
A、大前提B、小前提
C、結(jié)論D、無錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用1,2,3,4,5,6組成六位數(shù)(沒有重復(fù)數(shù)字),且3和4不相鄰,1和2相鄰,這樣的六位數(shù)的個(gè)數(shù)是(  )
A、72B、48C、144D、96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3個(gè)人坐在一排6個(gè)座位上,3個(gè)空位只有2個(gè)相鄰的坐法種數(shù)為( 。
A、24B、36C、48D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從2、4、6、8、10五個(gè)數(shù)字中任取2個(gè)作為一個(gè)分?jǐn)?shù)的分子與分母,則可組成分?jǐn)?shù)值不同的分?jǐn)?shù)個(gè)數(shù)為(  )
A、20B、18C、10D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8名學(xué)生和2位老師站成一排合影,2位老師不相鄰且不站在兩端的排法種數(shù)為( 。
A、A
 
8
8
A
 
2
9
B、A
 
8
8
A
 
2
8
C、A
 
8
10
A
 
2
8
D、A
 
8
8
A
 
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l,m,平面α,β,且l⊥α,m?β,則(  )
A、若平面α不平行于平面β,則l不可能垂直于m
B、若平面α平行于平面β,則l不可能垂直于m
C、若平面α不垂直于平面β,則l不可能平行于m
D、若平面α垂直于平面β,則l不可能平行于m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}是等差數(shù)列,a1+a2=2,a3+a4=4,則a5+a6=( 。
A、16B、12C、8D、6

查看答案和解析>>

同步練習(xí)冊答案