如果f(x)=x2+bx+c對任意實數(shù)t都有f (3+t)=f (3-t),那么( 。
分析:如果f(x)=x2+bx+c對任意實數(shù)t都有f (3+t)=f (3-t),故f(x)的對稱軸方程為x=3,由此能求出結果.
解答:解:∵如果f(x)=x2+bx+c對任意實數(shù)t都有f (3+t)=f (3-t),
∴f(x)的對稱軸方程為x=3,
∵f(x)的圖象是開口向上的拋物線,
∴f (3)<f (1)<f (6),
故選A.
點評:本題考查二次函數(shù)的性質和應用,是基礎題,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如果f(x)=x2+x+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果f(x)=x2,則
lim
△x→0
f(1+△x)-f(1)
△x
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果f(x)=
x2+1   (x≤0) 
-2x       (x>0)
那么f(f(1))=
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果f(x)=x2+bx+c對任意實數(shù)t都有f (3+t)=f (3-t),那么( 。

查看答案和解析>>

同步練習冊答案