7.已知z=1+i,則${z^2}+\overline{z}$=(  )
A.1+2iB.1-2iC.1+iD.1-i

分析 把z=1+i代入${z^2}+\overline{z}$,然后利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡得答案.

解答 解:∵z=1+i,
∴${z^2}+\overline{z}$=(1+i)2+1-i=2i+1-i=1+i.
故選:C.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在四棱錐P-ABCD中,PB⊥平面ABCD,AD∥BC,AB⊥AD,AB=AD=2,BC=4,點(diǎn)E為PC的中點(diǎn).
(1)求證:CD⊥平面PBD;
(2)若直線EB與平面ABCD所成角的正切值為$\frac{1}{2}$,試求三棱錐P-ABD的外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知:-$\frac{3π}{2}$<x<-π,tanx=-3. 
(Ⅰ)求 sinx•cosx的值;
(Ⅱ)求$\frac{sin(360°-x)•cos(180°-x)-si{n}^{2}x}{cos(180°+x)•cos(90°-x)+co{s}^{2}x}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線C1:x2=2y的焦點(diǎn)為F,以F為圓心的圓C2交C1于A、B,交C1的準(zhǔn)線于C、D,若四邊形ABCD是矩形,則圓C2的方程為( 。
A.x2+(y-$\frac{1}{2}$)2=4B.x2+(y-$\frac{1}{2}$)2=12C.x2+(y-1)2=4D.x2+(y-1)2=12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C所對邊分別為a、b、c,已知sinA•sin(A+$\frac{π}{3}$)=$\frac{3}{4}$.
(Ⅰ)求A的值;
(Ⅱ)若b=2,S△ABC=2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知θ是直線2x+2y-1=0的傾斜角,則sinθ的值是(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一支田徑隊(duì)有男運(yùn)動(dòng)員49人,女運(yùn)動(dòng)員35人,用分層抽樣的方法從全體運(yùn)動(dòng)員中抽出一個(gè)容量為24的樣本,則應(yīng)從男運(yùn)動(dòng)員中抽出的人數(shù)為( 。
A.10B.12C.14D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.四面體D-ABC中,AB=BC,在側(cè)面DAC中,中線AN⊥中線DM,且DB⊥AN.
(1)求證:MN∥面DAB;
(2)平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$θ∈(\frac{π}{2},π)$,則$\sqrt{1-2sin(π+θ)sin(\frac{3π}{2}-θ)}$=(  )
A.sinθ-cosθB.cosθ-sinθC.±(sinθ-cosθ)D.sinθ+cosθ

查看答案和解析>>

同步練習(xí)冊答案