已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是,求矩陣A.
【答案】分析:先設(shè)矩陣 ,這里a,b,c,d∈R,由二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量及矩陣M對應(yīng)的變換將點(1,0)變換為(2,3),得到關(guān)于a,b,c,d的方程組,即可求得矩陣M.
解答:解:設(shè),由得,,…(5分)

得,,所以
所以.  …(10分)
點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是
1
1
,求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是
1
1
,(1)求矩陣A.(2)
β
=
4
0
,求A5
β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是
1
1
,(1)求矩陣A.(2)
β
=
4
0
,求A5
β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省鹽城市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是,求矩陣A.

查看答案和解析>>

同步練習(xí)冊答案