已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a
2x+1
是奇函數(shù),
(1)求a值,并判斷f(x)的單調(diào)性(不需證明);
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍.
考點(diǎn):函數(shù)恒成立問題,奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)是奇函數(shù),利用f(0)=0,建立方程即可求a值,并判斷f(x)的單調(diào)性;
(2)利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行轉(zhuǎn)化,即可得到結(jié)論.
解答: 解:(1)∵定義域?yàn)镽的函數(shù)f(x)=
-2x+a
2x+1
是奇函數(shù),
f(0)=
-1+a
2
=0
,
∴a=1,
f(x)=
1-2x
1+2x

經(jīng)驗(yàn)證,f(x)為奇函數(shù),
∴a=1,
函數(shù)f(x)為減函數(shù).
(2)由f(t2-2t)+f(2t2-k)<0得f(t2-2t)<-f(2t2-k),
∵f(x)是奇函數(shù),
∴f(t2-2t)<f(k-2t2),
由(1),f(x)是減函數(shù),
∴原問題轉(zhuǎn)化為t2-2t>k-2t2,
即3t2-2t-k>0對(duì)任意t∈R恒成立
∴△=4+12k<0,
k<-
1
3
即為所求.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和單調(diào)性的判斷和應(yīng)用,利用二次函數(shù)和二次不等式之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC所在平面上一點(diǎn),且
OA
+2
OB
+3
OC
=
0
,則△OBC和△ABC的面積比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:3x+2ay-5=0,l2:(3a-1)x-ay-2=0,若l1∥l2,則a的值為( 。
A、-
1
6
B、6
C、0
D、0或-
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2an+1=an+1,求數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(Ⅰ)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,又F(x)=
f(x)(x>0)
-f(x)(x<0)
,求F(2)+F(-2)的值;
(Ⅱ)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
1
2
ax2-x-lnx

(1)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=pn2+qn.
(1)當(dāng)p,q滿足什么條件時(shí),數(shù)列{an}是等差數(shù)列;
(2)求證:對(duì)任意實(shí)數(shù)p、q,數(shù)列{an+1-an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=k(x-1).
(Ⅰ)若f(x)≥g(x)恒成立,求實(shí)數(shù)k的值;
(Ⅱ)若方程f(x)=g(x)有一根為x1(x1>1),方程f′(x)=g′(x)的根為x0,是否存在實(shí)數(shù)k,使
x1
x0
=k?若存在,求出所有滿足條件的k值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某個(gè)部件由兩個(gè)電子元件按如圖連接而成,當(dāng)元件1或元件2正常工作,該部件正常工作.設(shè)兩個(gè)電子元件的使用壽命(單位:小時(shí))均服從正態(tài)分布N(800,100),且各個(gè)元件能否正常工作相互獨(dú)立,那么該部件的使用壽命超過800小時(shí)的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案