已知二階矩陣M對應的變換將點O,A,B,C分別變成點O,A′,B′,C′,其中O為坐標原點,A(2,0),B(2,1),C(0,1),A′(2,1),B′(2,2).求矩陣M及點C′的坐標.
考點:變換、矩陣的相等
專題:選作題,矩陣和變換
分析:設出矩陣M,由題意得到關于a、b、c、d的方程組,解方程求出矩陣M,再利用矩陣的乘法,即可求出點C′的坐標.
解答: 解:設矩陣M=
ab
cd
,則
ab
cd
2
0
=
2
1
,
ab
cd
2
1
=
2
2

2a=2
2a+b=2
,
2c=1
2c+d=2
,
∴a=1,b=0,c=0.5,d=1,
∴M=
10
0.51
,
10
0.51
0
1
=
0
1
,
∴C′(0,1).
點評:本題考查矩陣變換,考查待定系數(shù)法求矩陣,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知⊙O:x2+y2=4,直線l:ax-y+1=0.則直線l與⊙O的位置關系是(  )
A、相交B、相離
C、相切D、與a的值有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.數(shù)列{bn}的前n項和為Rn,Rn=1-
1
2n
,(n∈N*),
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學生社團在對本校學生學習方法開展問卷調查的過程中發(fā)現(xiàn),在回收上來的1000份有效問卷中,同學們背英語單詞的時間安排共有兩種:白天背和晚上臨睡前背.為研究背單詞時間安排對記憶效果的影響,該社團以5%的比例對這1000名學生按時間安排類型進行分層抽樣,并完成一項實驗,實驗方法是,使兩組學生記憶40個無意義音節(jié)(如XIQ、GEH),均要求在剛能全部記清時就停止識記,并在8小時后進行記憶測驗.不同的是,甲組同學識記結束后一直不睡覺,8小時后測驗;乙組同學識記停止后立刻睡覺,8小時后叫醒測驗.兩組同學識記停止8小時后的準確回憶(保持)情況如圖(區(qū)間含左端點而不含右端點)

(1)估計1000名被調查的學生中識記停止后8小時40個音節(jié)的保持率大于等于60%的人數(shù);
(2)從乙組準確回憶結束在[12,20)范圍內的學生中隨機選2人,求2人都在同一范圍([12,16)或[16,20))的概率.
(3)從本次實驗的結果來看,上述兩種時間安排方法中哪種方法背英語單詞記憶效果更好?計算并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(-cos2x,2),
b
=(2,2-
3
sin2x),函數(shù)f(x)=
a
b
-4.
(Ⅰ)若x∈[0,
π
2
],求f(x)的最大值并求出相應x的值;
(Ⅱ)若將f(x)圖象上的所有點的縱坐標縮小到原來的
1
2
倍,橫坐標伸長到原來的2倍,再向左平移
π
3
個單位得到g(x)圖象,求g(x)的最小正周期和對稱中心;
(Ⅲ)若f(α)=-1,α∈(
π
4
π
2
),求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin
πx
3
,則f(1)+f(2)+f(3)+…+f(2010)+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax-
1
x
-a+1,
(1)當a=2時,求關于x的不等式f(x)>0的解集;
(2)當a>0時,求關于x的不等式f(x)<0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
BA
=(2,3),
CA
=(4,7),則
BC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明:設a、b、c都是正數(shù),則三個數(shù)a+
1
b
,b+
1
c
,c+
1
a
中至少有一個不小于2.

查看答案和解析>>

同步練習冊答案