精英家教網 > 高中數學 > 題目詳情
f(x)=sin(2x+
π
6
)+2msinxcosx,x∈R

(1)當m=0時,求f(x)在[0,
π
3
]
內的最小值及相應的x的值;
(2)若f(x)的最大值為
1
2
,求m的值.
(1)當m=0時,求f(x)=sin(2x+
π
6
),因為x∈[0,
π
3
]
,則2x+
π
6
∈[
1
6
π,
5
6
π]
,
所以fmin=
1
2
,此時x=0或
π
3

(2)令f(x)=sin(2x+
π
6
)+2msinxcosx=(m+
3
2
)sin2x+
1
2
cos2x=
(m+
3
2
)
2
+
1
4
sin(2x+?)
,
其中tan?=
1
2
m+
3
2
,于是f(x)max=
(m+
3
2
)
2
+
1
4

(m+
3
2
)
2
+
1
4
=
1
2
,解得:m=-
3
2
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

f(x)=sin(2x+
π
6
)+2msinxcosx,x∈R

(1)當m=0時,求f(x)在[0,
π
3
]
內的最小值及相應的x的值;
(2)若f(x)的最大值為
1
2
,求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
sin(
π
2
x+
π
4
)
(x≤2008)
f(x-5)(x>2008)
,則f(2007)+f(2008)+f(2009)+f(2010)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
sinπx(x<0)
f(x-1)+1(x≥0)
,g(x)=
cosπx(x<
1
2
)
g(x-1)+1(x≥
1
2
)
,則g(
1
4
)+f(
1
3
)+g(
5
6
)+f(
3
4
)
的值為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
sinπx,(x<0)
f(x-1)+1(x≥0)
g(x)=
cosπx,(x<
1
2
)
g(x-1)+1(x≥
1
2
)
,則f(
1
3
)+g(
5
6
)
=
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中正確的是( 。

查看答案和解析>>

同步練習冊答案