如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上,且CE=λCC1
(1)λ為何值時,A1C⊥平面BED;
(2)若A1C⊥平面BED,求二面角A1-BD-E的余弦值.

【答案】分析:(1)法一:由于λ不確定,從而E點是個動點,而要A1C⊥平面BED,所以不妨考慮A1C⊥平面BED滿足的條件,從而發(fā)現(xiàn)必須有A1C⊥BE,由三垂線定理,得到B1C⊥BE,由三角形相似容易得到λ的值,
法二:用向量法,以D為坐標原點,射線DA為x軸的正半軸,射線DC為y軸的正半軸,射線DD1為z軸的正半軸,建立如圖所示直角坐標系D-xyz.則:D(0,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),由于CE=λCC1,而CC1的坐標可求,A1C坐標可求,若A1C⊥平面BED,則A1C⊥DE,由向量內(nèi)積定義可求λ的值;
(2)法一:在解決問題(1)的基礎(chǔ)上,可以作出二面角的平面角,通過解三角形解決.
法二:用向量法,由(1)知平面BDE的一個法向量為=(-2,2,-4),故只需求平面DA1B的一個法向量,設(shè)為n=(x,y,z),則n⊥,n⊥,通過內(nèi)積為0求之,再計算向量n與向量A1C的夾角即可.
解答:解:法一:(1)連接B1C交BE于點F,連接AC交BD于點G,
∴AC⊥BD,由垂直關(guān)系得,A1C⊥BD,
若A1C⊥平面BED,則A1C⊥BE,
由垂直關(guān)系可得B1C⊥BE,
∴△BCE∽△B1BC,∴==,
∴CE=1,∴λ==
(2)連接A1G,連接EG交A1C于H,則A1G⊥BD.
∵A1C⊥平面BED,
∴∠A1GE是二面角A1-BD-E的平面角.
∵A1G=3,EG=,A1E=
∴cos∠A1GE==,

法二:(1)以D為坐標原點,射線DA為x軸的正半軸,射線DC為y軸的正半軸,射線DD1為z軸的正半軸,建立如圖所示直角坐標系D-xyz.
依題設(shè),D(0,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),
∵CE=λCC1=4λ,∴E(0,2,4λ),
=(2,2,0),=(2,0,4),
=(-2,2,-4),=(0,2,4λ),
=2×(-2)+2×2+0×(-4)=0,
,∴DB⊥A1C.
若A1C⊥平面BED,則A1C⊥DE,∴,
=(-2)×0+2×2+(-4)×4λ=4-16λ=0,
∴λ=
(2)設(shè)向量n=(x,y,z)是平面DA1B的一個法向量,
則n⊥,n⊥,∴2x+2y=0,2x+4z=0,
令z=1,則x=-2,y=2,∴n=(-2,2,1)
由(1)知平面BDE的一個法向量為=(-2,2,-4)
∴cos<n,>==
即二面角A1-BD-E的余弦值為

點評:本題考查直線垂直于平面、二面角的求法,在長方體、正方體等較為規(guī)則的幾何體中,因為容易建立空間坐標系,可以考慮向量法解決,也可以用幾何法推導(dǎo),但是一定要注意問題中有連續(xù)的幾問時,前一問對后面問題的影響,從而使后面的問題的解決變得簡捷.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省高二上學期期中考試理科數(shù)學 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點.

(1)求證:AC1∥平面CNB1

(2)求四棱錐C-ANB1A1的體積.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

同步練習冊答案