已知數(shù)列{an}為等比數(shù)列,且a2=6,6a1+a3=30.
(Ⅰ)求an
(Ⅱ)設(shè)bn=log3a1+log3a2+…+log3an,若等比數(shù)列{an}的公比q>2,求數(shù)列{bn}的通項(xiàng)公式.
分析:(1)由數(shù)列{an}為等比數(shù)列,且a2=6,6a1+a3=30,知
a1q=6
6a1+a1q2=30
,解得
a1=2
q=3
,或
a1=3
q=2
,由此能求出an
(2)由等比數(shù)列{an}的公比q>2,知an=2×3n-1.所以bn=log3a1+log3a2+…+log3an=log3[(2×30)×(2×3)×(2×32)×…×(2×3n-1)],由此能求出數(shù)列{bn}的通項(xiàng)公式.
解答:解:(1)∵數(shù)列{an}為等比數(shù)列,且a2=6,6a1+a3=30.
a1q=6
6a1+a1q2=30
,
解得
a1=2
q=3
,或
a1=3
q=2

an=3×2n-1,或an=2×3n-1
(2)∵等比數(shù)列{an}的公比q>2,∴
a1=2
q=3
an=2×3n-1
∴bn=log3a1+log3a2+…+log3an
=log3[(2×30)×(2×3)×(2×32)×…×(2×3n-1)],
=log32n+log33
n(n-1)
2

=nlog23+
n(n-1)
2

bn=nlog32+
n(n-1)
2
點(diǎn)評:本題考查等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意對數(shù)的性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2011等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出“等和數(shù)列”的定義:從第二項(xiàng)開始,每一項(xiàng)與前一項(xiàng)的和都等于一個(gè)常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個(gè)常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=(  )
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊答案