已知α、β是△ABC的兩個內(nèi)角,則下列不等式恒成立的有
 

①sinα+sinβ>sin(α+β);②cosα+cosβ>cos(α+β);
③sinα+sinβ>cos(α+β);④cosα+cosβ>sin(α+β).
(把你認(rèn)為恒成立的不等式的序號都填上)
考點:兩角和與差的余弦函數(shù)
專題:計算題,三角函數(shù)的求值
分析:將sin(α+β),cos(α+β)展開,α、β是△ABC的兩個內(nèi)角,對所有選項逐一分析即可.
解答: 解:①sin(α+β)=sinαcosβ+sinβcosα,α,β∈(0,π)
所以,0<sinβ<1,0<sinα<1,-1<cosα<1,-1<cosβ<1,
sinα(cosβ-1)<0⇒sinαcosβ<sinα,同理sinβcosα<sinβ,
所以sin(α+β))=sinαcosβ+sinβcosα<sinα+sinβ,故①成立.
②用放縮法cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ所以②成立.
③對于α,β可以令他們都等于15°,則知道③不成立
④當(dāng)α=
3
,β=
π
6
時,cosα+cosβ=
3
2
-
1
2
,sin(α+β)=
1
2
.故④錯誤.
故答案為:①②
點評:本題主要考察兩角和與差的余弦函數(shù),考查分析推論能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={2,x},B={xy,1},若A=B,則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xlnx,g(x)=
ax2
2
,直線l:y=(k-3)x-k+2
(1)函數(shù)f(x)在x=e處的切線與直線l平行,求實數(shù)k的值
(2)若至少存在一個x0∈[1,e]使f(x0)<g(x0)成立,求實數(shù)a的取值范圍
(3)設(shè)k∈Z,當(dāng)x>1時f(x)的圖象恒在直線l的上方,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n表示兩條不同直線,α表示平面,下列說法正確的是( 。
A、若m∥α,n∥α,則m∥n
B、若m⊥α,m⊥n,則n∥α
C、若m∥α,m⊥n,則n⊥α
D、若m⊥α,n?α,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一艘船自西向東勻速航行,上午10時到達(dá)一座燈塔的南偏西75°距燈塔68海里的M處,下午2時到達(dá)這座燈塔的東南方向的N處,則這艘船的航行速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是遞減的等差數(shù)列,a2,a3是方程x2-5x+6=0的根.
(1)求{an}的通項公式;
(2)求數(shù)列{
an
2n
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

類比“兩角和與差的正弦公式”的形式,對于給定的兩個函數(shù):S(x)=
ex-e-x
2
,C(x)=
ex+e-x
2
,下面正確的運算公式是( 。
①S(x+y)=S(x)C(y)+C(x)S(y)     
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
A、①②B、③④C、①④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,∠A=30°,BC=1,D為斜邊AB的中點,則
AB
CD
=( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,a1=31,Sn是它的前n項和,S10=S22,求數(shù)列{an}的通項an和Sn

查看答案和解析>>

同步練習(xí)冊答案