7.設點P為雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)上一點,F(xiàn)1,F(xiàn)2分別是左右焦點,I是△PF1F2的內(nèi)心,若△IPF1,△IPF2,△IF1F2的面積S1,S2,S3滿足2(S1-S2)=S3,則雙曲線的離心率為2.

分析 先根據(jù)題意作出示意圖,利用平面幾何的知識利用三角形面積公式,代入已知式2(S1-S2)=S3,化簡可得|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,再結(jié)合雙曲線的定義與離心率的公式,可求出此雙曲線的離心率.

解答 解:如圖,設圓I與△PF1F2的三邊F1F2、PF1
PF2分別相切于點E、F、G,連接IE、IF、IG,
則IE⊥F1F2,IF⊥PF1,IG⊥PF2,
它們分別是△IF1F2,△IPF1,△IPF2的高,
∴S1=$\frac{1}{2}$|PF1|•|IF|=$\frac{1}{2}$|PF1|r,
S2=$\frac{1}{2}$|PF2|•|IG|=$\frac{1}{2}$|PF2|r,
S3=$\frac{1}{2}$|F1F2|•|IE|=$\frac{1}{2}$|F1F2|r,
其中r是△PF1F2的內(nèi)切圓的半徑.
∵S1-S2=$\frac{1}{2}$S3,
∴$\frac{r}{2}$|PF1|-$\frac{r}{2}$|PF2|=$\frac{r}{4}$|F1F2|,
兩邊約去$\frac{r}{2}$得:|PF1|-|PF2|=$\frac{1}{2}$|F1F2|,
根據(jù)雙曲線定義,得|PF1|-|PF2|=2a,|F1F2|=2c,
∴2a=c⇒離心率為e=$\frac{c}{a}$=2.
故答案為:2.

點評 本題主要考查雙曲線離心率的計算,著重考查了雙曲線的基本性質(zhì)、三角形內(nèi)切圓的性質(zhì)和面積計算公式等知識點,屬于中檔題.考查學生的運算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.數(shù)列{an}中,滿足an+2=2an+1-an,且a1,a4031是函數(shù)f(x)=$\frac{1}{3}$x3-4x2+6x-1的極值點,則log2a2016的值是(  )
A.3B.4C.5D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,角A,B,C所對的邊長分別為a,b,c,B=45°.b=3
(Ⅰ)若cosC+$\sqrt{2}{cosA}$=1,求A和c的值;
(Ⅱ)若$\overrightarrow m$=(2sin$\frac{A}{2}$,-1),$\overrightarrow n$=(${\sqrt{3}$cos$\frac{A}{2}$,2sin2$\frac{A}{2}}$),f(A)=$\overrightarrow m•\overrightarrow n$,當$\frac{π}{4}$<A≤$\frac{π}{2}$,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.經(jīng)過點(0,2),(-3,0)的橢圓方程是$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$,其焦距是2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,經(jīng)過右焦點F2的直線與雙曲線C的右支交于P,Q兩點,且|PF2|=2|F2Q|,PQ⊥F1Q,則雙曲線C的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{10}}{2}$D.$\frac{\sqrt{17}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知雙曲線C的方程為$\frac{x^2}{4}$-$\frac{y^2}{5}$=1,其左、右焦點分別是F1,F(xiàn)2.已知點 M坐標為(2,1),雙曲線C上點P(x0,y0)(x0>0,y0>0)滿足$\frac{{\overrightarrow{P{F_1}}•\overrightarrow{M{F_1}}}}{{|{\overrightarrow{P{F_1}}}|}}$=$\frac{{\overrightarrow{{F_2}{F_1}}•\overrightarrow{{M}{F_1}}}}{{|{\overrightarrow{{F_2}{F_1}}}|}}$,則S${\;}_{△{P}{M}{F_1}}}$-S${\;}_{△{P}{M}{F_2}}}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到g(x)=sin(2x+$\frac{π}{2}$)的圖象,則只需將f(x)的圖象( 。
A.向右平移$\frac{π}{6}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向左平移$\frac{π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{1}{2}$(sinx+cosx)-$\frac{1}{2}$|sinx-cosx|+1,則f(x)的值域是( 。
A.[0,2]B.[1-$\frac{\sqrt{2}}{2}$,2]C.[0,1-$\frac{\sqrt{2}}{2}$]D.[0,1+$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1、F2,左右頂點分別為A1,A2,P是雙曲線左支上任意一點,則分別以線段PF2,A1A2為直徑的兩圓位置關系為( 。
A.內(nèi)切B.外切C.相交D.相離

查看答案和解析>>

同步練習冊答案