【題目】設(shè)函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內(nèi)的圖象上存在兩點(diǎn),在這兩點(diǎn)處的切線互相垂直,則實(shí)數(shù)a的取值范圍是

【答案】(﹣
【解析】解:當(dāng)x≥2a時(shí),f(x)=|ex﹣e2a|=ex﹣e2a , 此時(shí)為增函數(shù),
當(dāng)x<2a時(shí),f(x)=|ex﹣e2a|=﹣ex+e2a , 此時(shí)為減函數(shù),
即當(dāng)x=2a時(shí),函數(shù)取得最小值0,
設(shè)兩個(gè)切點(diǎn)為M(x1 , f(x1)),N((x2 , f(x2)),
由圖象知,當(dāng)兩個(gè)切線垂直時(shí),必有,x1<2a<x2 ,
即﹣1<2a<3﹣a,得﹣ <a<1,
∵k1k2=f′(x1)f′(x2)=ex1(﹣ex2)=﹣ex1+x2=﹣1,
則ex1+x2=1,即x1+x2=0,
∵﹣1<x1<0,∴0<x2<1,且x2>2a,
∴2a<1,解得a< ,
綜上﹣ <a< ,
所以答案是:(﹣ ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若的極值點(diǎn),求的極大值;

(2)求實(shí)數(shù)的范圍,使得恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6 , (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log3a1+log3a2+…+log3an , 求數(shù)列{ }的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex1+x﹣2(e為自然對(duì)數(shù)的底數(shù)).g(x)=x2﹣ax﹣a+3.若存在實(shí)數(shù)x1 , x2 , 使得f(x1)=g(x2)=0.且|x1﹣x2|≤1,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}滿足a1=1,(n+1)a2n+1+an+1an﹣na =0,數(shù)列{bn}的前n項(xiàng)和為Sn且Sn=1﹣bn
(1)求{an}和{bn}的通項(xiàng);
(2)令cn= , ①求{cn}的前n項(xiàng)和Tn
②是否存在正整數(shù)m滿足m>3,c2 , c3 , cm成等差數(shù)列?若存在,請(qǐng)求出m;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側(cè),則直線l的傾斜角的取值范圍是(
A.( ,
B.(
C.( ,
D.(0, )∪( ,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個(gè),分別編號(hào)為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個(gè)球.

(Ⅰ)若兩個(gè)球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號(hào)的差的絕對(duì)值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為的菱形,且,側(cè)面為等邊三角形,且與底面垂直, 的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案