精英家教網(wǎng)如圖,點(diǎn)A、B為橢圓
x2
4
+
y2
2
=1
長(zhǎng)軸的兩個(gè)端點(diǎn),點(diǎn)M為該橢圓上位于第一象限內(nèi)的任意一點(diǎn),直線(xiàn)AM、BM分別與直線(xiàn)l:x=2
2
相交于點(diǎn)P、Q.
(1)若點(diǎn)P、Q關(guān)于x軸對(duì)稱(chēng),求點(diǎn)M的坐標(biāo);
(2)證明:橢圓右焦點(diǎn)F在以線(xiàn)段PQ為直徑的圓上.
分析:(1)求出直線(xiàn)AM的方程,可得P的坐標(biāo),同理求出Q的坐標(biāo),利用點(diǎn)P、Q關(guān)于x軸對(duì)稱(chēng),即可求點(diǎn)M的坐標(biāo);
(2)證明橢圓右焦點(diǎn)F在以線(xiàn)段PQ為直徑的圓上,只需證明FP⊥FQ,利用向量知識(shí)可求.
解答:(1)解:由題意,a=2,∴A(2,0),B(-2,0).
設(shè)點(diǎn)M的坐標(biāo)為(x0,y0),則直線(xiàn)AM的方程為y=
y0
x0-2
(x-2)
,
令x=2
2
,則P(2
2
,
y0
x0-2
•(2
2
-2)
).
同理,Q((2
2
y0
x0+2
•(2
2
+2)
).
∵點(diǎn)P、Q關(guān)于x軸對(duì)稱(chēng),
y0
x0-2
•(2
2
-2)
+
y0
x0+2
•(2
2
+2)
=0,
x0=
2
,
代入橢圓方程,
∵點(diǎn)M為該橢圓上位于第一象限內(nèi)的任意一點(diǎn),
∴y0=1,
∴點(diǎn)M的坐標(biāo)為(
2
,1);
(2)證明:∵c=
4-2
=
2

∴F(
2
,0)
,
FP
FQ
=2+
y0
x0-2
y0
x0+2
(2
2
-2)(2
2
+2)
=
2(x02+2y02-4)
x02-4
,
x02
4
+
y02
2
=1
,
x02+2y02=0,
FP
FQ
=0,
FP
FQ
,
∴FP⊥FQ,
∴橢圓右焦點(diǎn)F在以線(xiàn)段PQ為直徑的圓上.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線(xiàn)方程,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B分別是橢圓
x2
36
+
y2
20
=1
的長(zhǎng)軸的左右端點(diǎn),點(diǎn)F為橢圓的右焦點(diǎn),直線(xiàn)PF的方程為:
3
x+y-4
3
=0
且PA⊥PF.
(1)求直線(xiàn)AP的方程;
(2)設(shè)點(diǎn)M是橢圓長(zhǎng)軸AB上一點(diǎn),點(diǎn)M到直線(xiàn)AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B,C是橢圓M:
x2
a2
+
y2
b2
=1
的三個(gè)頂點(diǎn),F(xiàn)1,F(xiàn)2是它的左、右焦點(diǎn),P是M上一點(diǎn),且PF2⊥OB.則下列命題:
①存在a,b使得△AF2P為等腰直角三角形
②存在a,b使得△F1F2P為等腰直角三角形
③存在a,b使得△OF2P為等腰直角三角形
④存在a,b使得△BF2P為等腰直角三角形
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A、B分別是橢圓長(zhǎng)軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn),其中A(-6,0),F(xiàn)(4,0),點(diǎn)P在橢圓上且位于x軸上方,
PA
PF
=0

(Ⅰ)求橢圓的方程和離心率;
(Ⅱ)求點(diǎn)P的坐標(biāo);
(Ⅲ)若過(guò)點(diǎn)F且傾斜角為45°的直線(xiàn)l交橢圓于D,E兩點(diǎn),求△ADE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)A、B分別是橢圓
x2
36
+
y2
20
=1
的長(zhǎng)軸的左、右端點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),直線(xiàn)PF的方程為
3
x+y-3
2
=0
,且PA⊥PF.
(Ⅰ)求直線(xiàn)PA的方程;
(Ⅱ)設(shè)M是橢圓長(zhǎng)軸AB上的一點(diǎn),M到直線(xiàn)AP的距離等于|MB|,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案