下列命題錯(cuò)誤的是( 。
A、若命題P:?x0∈R,x02-x0+1≥0,則¬P:?x∈R,x2-x+1<0
B、若命題p∨q為真,則p∧q為真
C、一組數(shù)據(jù)1,2,3,3,4,5的平均數(shù)、眾數(shù)、中位數(shù)都相同
D、根據(jù)具有線性相關(guān)關(guān)系的兩個(gè)變量的統(tǒng)計(jì)數(shù)據(jù)所得的回歸直線方程為
y
=
a
+
b
x中,若
b
=2,
.
x
=1,
.
y
=3,則
a
=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),則下列結(jié)論中正確的是( 。
A、向量
a
與向量
b
共線
B、向量
a
在向量
b
方向上的投影為1
C、對(duì)同一平面內(nèi)任意向量
d
,都存在實(shí)數(shù)k1,k2,使得
d
=k1
b
+k2
c
D、若
c
1
a
2
b
(λ1,λ2∈R),則λ1=0,λ2=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a1+a2=1,a4+a5=-8,則公比q=( 。
A、-2
B、2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,cosx=
5
4
;命題q:?x∈R,x2-x+1>0.則下列結(jié)論正確的是(  )
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題(¬p)∧(¬q)是真命題
D、命題(¬p)∨(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
A、命題“存在x∈R,x2+x+2013>0”的否定是“任意x∈R,x2+x+2013<0”
B、兩個(gè)三角形全等是這兩個(gè)三角形面積相等的必要條件
C、函數(shù)f(x)=
1
x
在其定義域上是減函數(shù)
D、給定命題p、q,若“p且q”是真命題,則¬p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,如果x1,x2∈R,且x1≠x2,下列關(guān)于f(x)的性質(zhì):
①(x1-x2)[f(x1)-f(x2)]>0;
②y=f(x)不存在反函數(shù);
f(x1)+f(x2)<2f(
x1+x2
2
)
;
④方程f(x)=x2在(0,+∞)上沒(méi)有實(shí)數(shù)根,其中正確的是( 。
A、①②B、①④C、①③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中的假命題是( 。
A、?x∈R,2-x+1>1
B、?x∈[1,2],x2-1≥0
C、?x∈R,sinx+cosx=
3
2
D、?x∈R,x2+
1
x2+1
≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:ax+3y-1=0,l2:x+by+1=0,則
a
b
=-3是l1⊥l2( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列函數(shù):
①f(x)=x 
1
2

②f(x)=2x;
③f(x)=log2x;
④f(x)=sinx.
則滿足關(guān)系式f′(
1
2
)>f(
3
2
)-f(
1
2
)>f′(
3
2
)的函數(shù)的序號(hào)是( 。
A、①③B、②④
C、①③④D、②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案