下列命題中
 
為真命題.(填上所有正確答案的序號)
①“a>0是a>1的充分不必要條件”;
②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題;
④“圓內(nèi)接四邊形對角互補(bǔ)”的逆否命題.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件和四種命題之間的 關(guān)系即可得到結(jié)論.
解答: 解:①a>0是a>1的必要不充分條件,故①錯誤;
②若x2+y2=0,則x,y全為0”的逆命題為:x,y全為0,x2+y2=0,為真命題,根據(jù)逆否命題的等價性可知,否命題也是真命題,故②正確;
③全等三角形是相似三角形”的逆命題是相似三角形是全等三角形,錯誤,故③錯誤;
④“圓內(nèi)接四邊形對角互補(bǔ)”正確,故逆否命題也正確,故④正確.
故正確是命題是②④,
故答案為:②④
點(diǎn)評:本題主要考查命題的真假判斷,要求熟練掌握充分條件和必要條件的判斷以及四種命題之間的真假關(guān)系,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式-x2+2x>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
(1)p:?x∈R,tanx=1,q:?x∈R,x2-x+1>0,則p∧?q為假;
(2)設(shè)直線l1:ax+3y-1=0;l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3;
(3)若sin(α+β)=
1
2
,sin(α-β)=
1
3
,則tanα=5tanβ.
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:其中正確命題的序號是
 
.(填上所有正確命題的序號)
①函數(shù)y=|x|與函數(shù)y=(
x
2表示同一個函數(shù);
②正比例函數(shù)的圖象一定通過直角坐標(biāo)系的原點(diǎn);
③若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
④已知集合P={a,b},Q={-1,0,1},則映射f:P→Q中滿足f(b)=0的映射共有3個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程|x-k|=
2
2
k
x
在區(qū)間[k-1,k+1]上有兩個不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程ex=
m
2-m
在區(qū)間(0,+∞)上有解,則實(shí)數(shù)m的取值范圍是(  )
A、(0,1)
B、(1,2)
C、(-∞,1)∪(2,+∞)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-2x+3在區(qū)間[0,m]的最大值為3,最小值為2,則m的取值范圍為( 。
A、1≤m≤2B、m≥1
C、0≤m≤2D、m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-ax2+2x+1至多有一個零點(diǎn),則a的取值范圍是(  )
A、1B、[1,+∞)
C、(-∞,-1]D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[1-a,5]上的偶函數(shù),則a的值是( 。
A、0B、1C、6D、-6

查看答案和解析>>

同步練習(xí)冊答案