11.某公司為適應(yīng)市場需求,投入98萬元引進(jìn)新生產(chǎn)設(shè)備,并馬上投入生產(chǎn),第一年需要的各種費(fèi)用是12萬元,從第二年開始,所需費(fèi)用比上一年增加4萬元,而每年因引入該設(shè)備可獲得的年利潤為50萬元,則引進(jìn)該設(shè)備3年后,該公司開始盈利.

分析 設(shè)引進(jìn)該設(shè)備 n年后,該公司開始盈利,則50n>98+12n+$\frac{n(n-1)}{2}×4$,解出即可得出.

解答 解:設(shè)引進(jìn)該設(shè)備 n年后,該公司開始盈利,則50n>98+12n+$\frac{n(n-1)}{2}×4$,
化為:n2-20n+49<0,解得10-$\sqrt{15}$<n<$10+\sqrt{51}$,
∴引進(jìn)該設(shè)備3年后,該公司開始盈利.
故答案為:3.

點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知i為虛數(shù)單位,m∈R,復(fù)數(shù)z=(-m2+2m+8)+(m2-8m)i,若z為負(fù)實(shí)數(shù),則m的取值集合為( 。
A.{0}B.{8}C.(-2,4)D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線MN的斜率為2,其中點(diǎn)N(1,-1),點(diǎn)M在直線y=x+1上,則( 。
A.M(5,7)B.M(4,5)C.M(2,1)D.M(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合U={0,1,2,3,4,5},A={1,2,3},B={x∈Z|x2-5x+4≥0},則A∩(∁UB)=( 。
A.{1,2,3}B.{1,2}C.{2,3}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某單位N名員工參加“我愛閱讀”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
(Ⅰ)求正整數(shù)a,b,N的值;
(Ⅱ)現(xiàn)要從年齡低于40歲的員工用分層抽樣的方法抽取42人,則年齡在第1,2,3組得員工人數(shù)分別是多少?
(Ⅲ)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對該單位所有員工中按性別比例抽查的40人是否喜歡閱讀國學(xué)類書
喜歡閱讀國學(xué)類 不喜歡閱讀國學(xué)類 合計(jì)
 男 14 4 18
 女 8 14 22
 合計(jì) 22 18 40
籍進(jìn)行了調(diào)查,調(diào)查結(jié)果如下所示:(單位:人)
下面是年齡的分布表:
 區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50)
 人數(shù) 28 a b
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是定義在R上的可導(dǎo)函數(shù),且滿足(x+2)f(x)+xf'(x)>0,則(  )
A.f(x)>0B.f(x)<0C.f(x)為減函數(shù)D.f(x)為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=n2+n+1,bn=(-1)n(an-2)(n∈N*),則數(shù)列{bn}的前50項(xiàng)和為49.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,若正方形ABCD四個(gè)頂點(diǎn)在雙曲線C上,且AB,CD的中點(diǎn)為雙曲線C的兩個(gè)焦點(diǎn),則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}-1}}{2}$B.$\sqrt{5}-1$C.$\frac{{\sqrt{5}+1}}{2}$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知cos($\frac{2π}{3}$-α)=$\frac{3}{4}$,則sin(α-$\frac{π}{6}$)cos($\frac{π}{3}$-2α)=( 。
A.$\frac{3}{32}$B.-$\frac{3}{32}$C.$\frac{3}{16}$D.-$\frac{3}{16}$

查看答案和解析>>

同步練習(xí)冊答案